Instituto Superior Politécnico de Tete / Exame de Admissão de Matemática / 2010

D. $\frac{8}{5}$

1. Sejam $A \in B$ dois pontos da recta de equação y = 2x + 2, que distam de duas unidades da

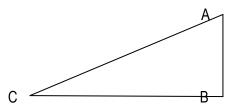
B. $-\frac{8}{5}$ **C.** $-\frac{5}{8}$

origem. Nesse caso , a soma das abcissas dos dois pontos é :

2. Num determinado parque de estacionamento lê – se o seguinte :

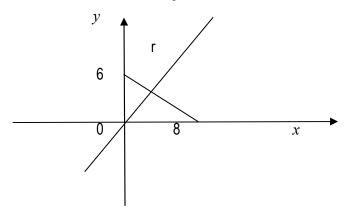
150,00 mts – por hora de permanência de veículo.

A lei que dará o preço a pagar a cada veículo será :


200,00 mts - entrada

	A. $y = 150x + 200$	0 B. $y = 200x + 1$	50 C. $y = 150x - 200$	D. $y = 200x - 150$		
3.	O gráfico da função $p(x) = x^3 + (a+3)x - 5x + b$ contém os pontos $(-1;0)$ e $(2;0)$. Assir sendo, o valor de $p(0)$ é :					
	A. -6	B. -1	C. 1	D. 6		
4.	Sejam $f,g:IR \to IR$ dadas por $f(x)=x^2-2x$ e $g(x)=ax+b$, onde a e b são número reais. Nas condições anteriores $(f \circ g)(0)$ é igual a :					
	A. 0	B. <i>b</i>	C. $-2b+b^2$	D. $b^2 - 2b$		
5.	Sabe – se a média aritmética de 5 números inteiros distintos, estritamente posetivos é 16. O valor que um desses inteiros pode assumir é :					
	A. 16	B. 70	C . 76	D. 80		
6.	Considere um reservatório, em forma de um paralelepípedo rectângulo, cuja as medidas são a metros de comprimentos, 5 m de largura e 120 cm de profundidade. Bombeia – se água para dentro desse reservatório, inicialmente vazio, a uma taxa de 2 dois litros por segundos. Com base nessas informações, o tempo necessário para se encher completamente o reservatório é de :					
	A. 40 min	B. 240 min	C. 400 min	D. 480 min		

Instituto Superior Politécnico de Tete / Exame de Admissão de Matemática / 2010


- 7. O domínio da função real $f(x) = \sqrt{\frac{1-x}{x+1}} \sqrt[4]{x}$, é o intervalo [a;b], onde o valor de a+b é igual a :
 - **A.** 0
- **B**. 1
- **C**. 2

- **D**. 3
- 8. Uma pessoa encontra se no aeroporto (ponto A) e pretende ir para sua casa (ponto C) , distante 20 km do aeroporto, utilizando um taxi cujo valor a pagar , em meticais , é calculado pela expressão v(x) = 12 + 1,5x , em que x é a distância percorrida. Use $\sqrt{3} = 1,7$

Se B = 90° , C = 30° e o taxi seguir o percurso AB + BC , conforme indicado na figura acima , o valor que essa pessoa vai pagar em meticais é :

- **A.** 40,5
- **B.** 48,0
- **C.** 52,5
- **D.** 56,0
- **9.** No Sistema Cartesiano da figura , a recta r divide o triângulo maior e dois triângulos menores de mesma área. Então , o valor do coeficiente angular de r é :

- **A.** 0,50
- **B.** 0,75
- **C.** 1,33
- **D.** 2,00

10. Para que o	Para que o sistema de equações $\begin{cases} 2x-y+5=0 \\ x^2+y-a=0 \end{cases}$, admita apenas uma solução real , o valor de						
a deve ser i	gual a :						
A. 0	B. – 4	C. 2	D. 4				
11. Uma progressão aritmética e uma progressão geométrica tem o número 2 como primeiro termo. Seus quintos termos também coincidem e a razão da progressão geométrica é 3. Sendo assim a razão da progressão aritmética é :							
A . 3	B. 4	C. 20	D. 21				
12. Se $\log_7 875 = a$, então $\log_{35} 245$ é igual :							
A. $\frac{a+2}{a+7}$	B. $\frac{a+2}{a+5}$	C. $\frac{a+5}{a+2}$	D. $\frac{a+7}{a+2}$				
13. Um aluno d	13. Um aluno de férias observou que choveu sete vezes pela manhã e tarde. Quando chovia pela tarde , não chovia pela manhã. No total não choveu cinco tardes e seis manhãs . Os número de dias que o aluno ficou de férias é :						
A. 5	B. 9	C. 11	D. 18				
14. A derivada d	la função $f(x) = Sen^2$:	κ, é:					

16. Uma recta tem coeficiente angular 1, uma outra recta perpendicular a esta terá coeficiente angular igual :

15. O ponto em que, a tangente à parábola $y = x^2 - 7x + 3$ é paralela a recta 5x + y - 3 = 0 é :

C. *Cos*2*x*

B. (1;-3) **C.** (2;-7) **D.** (6;-3)

A. – 1

A. 2Senx

A. (0;3)

B. 0

B. *Sen*2*x*

C. 1

D. 2

D. Cos^2x

17.	Seja $f(x) = \left(\frac{23}{30}\right)$	\int_{-x}^{-x} , então $\lim_{x\to +\infty} f(x)$	será :			
	A. −∞	B. 0	C. 1,3	D. +∞		
18.	Numa caixa existem 24 bolas, das quais 12 são da cor azul ,8 da cor preta e 4 da cor verde. Um					
	bola é retirada ao acaso , a probabilidade da bola não ser da cor preta é :					
	A. $\frac{1}{24}$	B. $\frac{1}{3}$	c . $\frac{1}{24}$	D. $\frac{2}{3}$		
19.	Num grupo de 10 pessoas existem 5 Moçambicanos, 3 Brasileiros e 2 Angolanos. O número tot					
	de possibilidades, para se formar uma comissão de 3 elementos de nacionalidades diferentes , é :					
	A. 10	B. 30	C . 120	D . 720		
20.	. Numa Progressão geométrica de número ímpares de termos , cujo termo central é ρ , o produto entre o primeiro e o último termo será igual a :					
	A . <i>p</i>	B. 2 <i>p</i>	c. $\frac{p^2}{2}$	$\mathbf{D.} \ p^2$		
	7 <i>p</i>	5. 2p	2	5. <i>p</i>		
21.	O gráfico da função $y = -2x^2 + bx + c$ passa pelo ponto $(1;0)$ e o seu vértice é o ponto de coordenadas $(3;v)$, então , v é igual a :					
			C. 8	D 10		
22	A. -5	B. 4		D. 18		
ZZ.	Se $\forall x_1, x_2 \in D_f \text{ com } x_1 > x_2$, tivermos $f(x_1) < f(x_2)$ diz – se que a função $y = f(x)$ é :					
	A. Bijectiva	B. Crescente	C. Decrescente	D. Sobrejectiva		
23.	. A intersecção de dois conjuntos mutuamente exclusivos resulta um conjunto :					
	A. Complementar	B. Singular	C. Universal	D. Vazio		

Instituto Superior Politécnico de Tete / Exame de Admissão de Matemática / 2010

- **24.** O ângulo formado entre a recta de equação $\sqrt{3}y x + 5 = 0$ e o eixo das abcissas no sentido posetivo é:
 - **A**. 30°
- **B.** 45°
- **C**. 60°
- **D**. 90°
- **25.** As raízes da função $f(x) = \begin{cases} x^2 4 & se \ x \le 0 \\ -4 & se \ x > 0 \end{cases}$ é (são) :
 - **A.** -4
- **B.** 2
- **C**. 2
 - **D**. 2 e 2
- **26.** Os números $p \in q$ são tais que $3 \le p \le 6$ e $18 \le q \le 36$. O maior valor possível de $\frac{p}{q}$ é :

- A. $\frac{1}{2}$ B. $\frac{1}{3}$ C. $\frac{1}{6}$
- **27.** O declive da recta tangente ao gráfico da função f(x) = Senx no ponto de abcissa $x = \pi$ é :
 - **A.** −1
- **B.** 0
- **C.** 1
- **D.** 2
- **28.** O ponto de inflexão da função $f(x) = x^3 4x^2$ é :
 - **A.** $\left(\frac{4}{3}; -\frac{128}{27}\right)$ **B.** $\left(\frac{4}{3}; 0\right)$ **C.** $\left(\frac{4}{3}; -\frac{48}{9}\right)$ **D.** $\left(\frac{4}{3}; \frac{128}{27}\right)$

- 29. A soma dos ângulos internos de um quadrilátero é igual a :
 - **A.** 40°
- **B.** 90°
- **C.** 180°
- **D**. 360°
- **30.** A função $f(x) = \frac{2x^3 5}{x^3 2x}$ tem como assimptota horizontal a recta :

- **A.** y = 0 **B.** y = 1 **C.** y = 2 **D.** y = 5