

Bem-vindo(a) à nossa aplicação de preparação para exames! Chegou a hora de se destacar nos seus testes e conquistar o sucesso acadêmico que você merece. Apresentamos o "Guião de Exames Resolvidos": a sua ferramenta definitiva para uma preparação eficaz e resultados brilhantes!

Aqui, encontrará uma vasta coleção de exames anteriores cuidadosamente selecionados e resolvidos por especialistas em cada área. Nossa aplicação é perfeita para estudantes de todos os níveis acadêmicos, desde o ensino médio até a graduação universitária.

RESUMO DA 9ª CLASSE MATEMÁTICA 2025, MATRIZ

CAPITULO - I

1.0. Números e operações

Um **conjunto** é uma colecção de objectos com determinada característica comum. A cada objecto de um conjunto chama-se **elemento** do conjunto.

Os **conjuntos** são, geralmente, designados por letras maiúsculas (A, B, C, ...) e seus elementos por letras minúsculas (a, b, c, ...).

Geralmente, os conjuntos podem ser representados de duas chavetas ou em diagrama.

Exemplos:

Chavetas { }	Diagrama de venn
$V = \{vogais\ do\ alfabeto\}$ $V = \{a\ ,e\ ,i\ ,o\ ,u\}$	a e I o u
$P = \{\text{n\'umeros pares menores que 10}\}$ $P = \{0,2,4,6,8\}$	0 2 4 6 8
C = {cores da bandeira de Moçambique} C = {Verde, Branca, Preta, Amarela, Vermelha}	vermelha branca preta verde Amarela

1.1. Operação de conjuntos

1.1.1. Reunião ou união de conjuntos

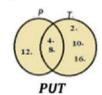
A reunião ou união de dois conjuntos A e B é o conjunto de todos elementos que pertencem ao conjunto A ou B. Para indicar a união de dois conjuntos usa-se o símbolo U.

Exemplo: Dado os conjuntos $P = \{4; 8; 12\} e T = \{2; 4; 8; 10; 16\}$

Diagrama de Venn

$$P \cup T = \{2; 4; 8; 10; 12; 16\}$$

PUT Lê-se P reunião ou união com T



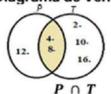
1.1.2. Intersecção de conjuntos

A **intersecção** de dois conjuntos A e B é o conjunto formado pelos elementos comuns dos conjuntos A e B. Para indicar a intersecção de dois conjuntos usa-se o símbolo ∩.

Exemplo: Dado os conjuntos $P = \{4; 8; 12\} e T = \{2; 4; 8; 10; 16\}$

$$P \cap T = \{4; 8\}$$
 $P \cap T$ Lê-se P intersecção com T

Olá! Estou aqui para ajudar com qualquer dúvida ou informação de que você precise. Se você tiver alguma pergunta ou precisar de assistência, sinta-se à vontade para entrar em contato comigo no WhatsApp. Estou disponível para conversar e ajudar no que for necessário. Aguardo o seu <mark>contato! <u>879369395</u></mark> Diagrama de Venn



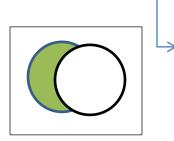
Nota que só foi pintada a parte da intersecção (parte comum dos dois diagramas).

1.1.3. Diferença de conjuntos

A diferença de dois conjuntos A e B ou B e A é o conjunto formado pelos elementos conjuntos A menos B ou B menos A . Para indicar a **diferença** de dois conjuntos usa-se o símbolo $\setminus ou$ –

Exemplo: Dado os conjuntos $P = \{4; 8; 12\} e T = \{2; 4; 8; 10; 16\}$

 $P \setminus T = P - T = \{12\}$ P - T Lê-se P diferença com T



No conjuntos P tirar tudo que esta no conjuntos T

$$P = \{4; 8; 12\} e T = \{2; 4; 8; 10; 16\}$$

Restante

Exercícios

Dados os seguintes conjuntos A e B, determina: $A \cup B \in A \cap B$

a)
$$A = \{1; 4; 5; 6\} e B = \{1; 5; 8; 9\}$$

b)
$$A = \{a; b; c; d\} e B = \{a; c; e\}$$

c)
$$A = \{x \in n \text{\'umero natural}\}\ e\ B = \{x \in n \text{\'umero impar}\}\$$

d)
$$A = \{1; 4; 5; 6\} e B = \{1; 5; 8; 9\}$$
 determina $A - B e B - A$

Resolução:

a)
$$A \cup B = \{1; 4; 5; 6; 8; 9\} e A \cap B = \{1; 5\}$$

b)
$$A \cup B = \{a; b; c; d; e\} e A \cap B = \{a; c\}$$

c)
$$A \cup B = \{x \in n \text{\'umero natural}\} A \cap B = \{x \in n \text{\'umero impar}\}$$

Olá! Estou aqui para ajudar com qualquer dúvida ou informação de que você precise. Se você tiver alguma pergunta ou precisar de assistência, sinta-se à vontade para entrar em contato comigo no WhatsApp. Estou disponível para conversar e ajudar no que for necessário. Aguardo o seu contato! 879369395

d)
$$A - B = \{4; 6\} e B - A = \{8; 9\}$$

1.1.4. Propriedades de operações com conjuntos

União	Propriedades	Intersecção
$A \cup A = A$	idempotência	$A \cap A = A$
$A \cup B = A \cup B$	Comutativa	$A \cap B = A \cap B$
$(A \cup B) \cup C = A \cup (B \cup C)$	Associativa	$(A \cap B) \cap C = A \cap (B \cap C)$
$A \cup \{ \} = \{ \} \cup A = A$	Existência do elemento neutro	$A\cap U=U\cap A=U$
$A \cup U = U \cup A = U$	Existência do elemento absorvente	$A \cap \{ \} = \{ \} \cap A = A$

Propriedade distribuitiva				
Da união em relação a intersecção Da intersecção em relação a união				
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$			
$(B \cap C) \cup A = (B \cup A) \cap (C \cup A)$	$(B \cup C) \cap A = (B \cap A) \cup (C \cap A)$			

→ Primeiras leis de morgan

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

1.2. Racionalização de denominadores

Racionalizar o denominador de uma fracção significa encontrar uma fracção equivalente que não contenha um número irracional no denominador.

A fracção obtida pode continuar irracional, apenas o denominador não apresenta o termo irracional, facilitando os cálculos.

1.2.1. Como racionalizar o denominador de uma fracção?

Para racionalizar o denominador de uma fracção, basta multiplicar o numerador e denominador desta por um termo conveniente, denominado Factor Racionalizante. Saber escolher o factor racionalizante correctamente caracteriza-se como a parte mais importante da solução do problema.

Vejamos alguns exemplos elucidativos:

a)
$$\frac{5}{\sqrt{3}} = \frac{5}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{5\sqrt{3}}{\sqrt{3 \cdot 3}} = \frac{5\sqrt{3}}{\sqrt{9}} = \frac{5\sqrt{3}}{3}$$

b)
$$\frac{2}{\sqrt[3]{6}} = \frac{2}{\sqrt[3]{6}} \times \frac{\sqrt[3]{6^2}}{\sqrt[3]{6^2}} = \frac{2.\sqrt[3]{6^2}}{\sqrt[3]{6.6^2}} = \frac{2.\sqrt[3]{36}}{\sqrt[3]{6^3}} = \frac{2.\sqrt[3]{36}}{6} = \frac{\sqrt[3]{36}}{3}$$

Neste exemplo, o factor racionalizante é $\sqrt[3]{6^2}$.

Nota: Toda a fracção do tipo $\frac{a}{\sqrt[n]{b^m}}$ o factor racionalizante é: $\sqrt[n]{b^{n-m}}$.

c)
$$\frac{1}{2+\sqrt{3}} = \frac{1}{2+\sqrt{3}} \cdot \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{2-\sqrt{3}}{2^2-(\sqrt{3})^2} = \frac{2-\sqrt{3}}{4-3} = 2 - \sqrt{3}$$

Nota: Toda a fracção do tipo $\frac{p}{\sqrt{a}\pm\sqrt{b}}$ o factor racionalizante é: $\sqrt{a}\mp\sqrt{b}$.

1.2.2. Expressões Numéricas com radicais - operações

Radical de índice "n"

Chama-se raiz de índice **n** de **a** a expressão do tipo: $\sqrt[n]{a}$ onde:

 $\sqrt{\text{é o sinal do radical}}$:

a é o radicando;

n é o índice do radical.

Nota:

O radical $\sqrt[n]{a}$ designa a raiz n-enésima de a.

Quando \mathbf{n} é par e \mathbf{a} é negativo, a expressão $\sqrt[n]{\mathbf{a}}$ não tem significado em IR.

Exemplos:

• $\sqrt{144} = 12$, porque $12^2 = 14$

• $\sqrt[3]{64} = 4$, porque $4^3 = 64$

• $\sqrt[3]{-27} = -3$, porque = (-3)

• $\sqrt[3]{\frac{1}{125}} = \frac{1}{5}$, porque $(\frac{1}{5})^3 = \frac{1}{1}$

√-16 nāo existe em IR.

1.2.3. Potência de expoente fraccionário

Potência de expoente fraccionário é qualquer potência cujo expoente é uma fracção com termos

inteiros.

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} \operatorname{com} a \in IR, m \in Z e (n \ge 2) \in IN$$

Exemplos:

• $16^{\frac{1}{2}} = \sqrt{16^1} = \sqrt{16} = 4$

• $5^{\frac{2}{3}} = \sqrt[3]{5^2} = \sqrt[3]{25}$

• $\left(\frac{2}{3}\right)^{\frac{3}{4}} = \sqrt[4]{\left(\frac{2}{3}\right)^3}$

1.2.4. Adição e subtracção de radicais

Para a adição e a subtracção de radicais, basta reduzir os radicais semelhantes e realizar a adição ou subtracção dos coeficientes (números).

$$: a^{n}\sqrt{x} + b^{n}\sqrt{x} = (a+b)^{n}\sqrt{x}, com x > 0; n \in \mathbb{N}; \mathbb{N} \ge 2; a, b \in \mathbb{R}$$

Exemplos:

• $5\sqrt{2} + 3\sqrt{2} - 4\sqrt{2} = (5 + 3 - 4)\sqrt{2} = 4\sqrt{2}$

• $\sqrt{3} + \sqrt{27} - \sqrt{75} = \sqrt{3} + \sqrt{3^3} - \sqrt{5^2 \cdot 3} = \sqrt{3} + 3\sqrt{3} - 5\sqrt{3} = (1 + 3 - 5)\sqrt{3} = -\sqrt{3}$

1.2.5. Multiplicação e Divisão de Radicais

1.2.5.1. Multiplicação e divisão de radicais com mesmo índice

Olá! Estou aqui para ajudar com qualquer dúvida ou informação de que você precise. Se você tiver alguma pergunta ou precisar de assistência, sinta-se à vontade para entrar em contato comigo no WhatsApp. Estou disponível para conversar e ajudar no que for necessário. Aguardo o seu contato! 879369395 O produto de radicais com o mesmo índice é igual a um radical do mesmo índice cujo radicando é o produto dos radicandos dos factores, isto é:

$$\sqrt[m]{a} \times \sqrt[m]{b} = \sqrt[m]{a \times b}$$

Pela definição $\sqrt[m]{a} \times \sqrt[m]{b} = a^{\frac{1}{m}} \times b^{\frac{1}{m}}$, aplicando a regra do produto de potências com o mesmo expoente $a^{\frac{1}{m}} \times b^{\frac{1}{m}} = (a \times b)^{\frac{1}{m}}$ e aplicando de novo a definição, tem-se $(a \times b)^{\frac{1}{m}} = \sqrt[m]{a \times b}$.

Exemplos:

•
$$\sqrt{5} \times \sqrt{3} = \sqrt{5 \times 3} = \sqrt{15}$$

•
$$\sqrt[6]{10} \times \sqrt[6]{\frac{2}{100}} = \sqrt[6]{10} \times \frac{2}{100} = \sqrt[6]{\frac{20}{100}} = \sqrt[6]{\frac{1}{5}}$$

O quociente de radicais com o mesmo índice é igual a um radical do mesmo índice cujo radicando é o quociente dos radicandos dos factores, isto é $\sqrt[m]{a} : \sqrt[m]{b} = \sqrt[m]{a:b}, \text{ com } b \neq 0$

Exemplos:

•
$$\sqrt{18} \div \sqrt{2} = \sqrt{18 \div 2} = \sqrt{9} = 3$$

•
$$\frac{\sqrt[3]{5}}{\sqrt[3]{2}} = \sqrt[3]{\frac{5}{2}}$$

•
$$\sqrt[5]{100} \div \sqrt[5]{50} = \sqrt[5]{100 \div 50} = \sqrt[5]{2}$$

1.2.5.2. Multiplicação e Divisão de Radicais com índices diferentes

Para se realizar a multiplicação e a divisão de radicais com índices diferentes:

1º Reduz-se os radicais ao mesmo índice;

2º Efectuam-se as operações de multiplicação ou divisão dos radicais com mesmo índice.

Exemplos:

•
$$\sqrt{2} \times \sqrt[3]{4} = \sqrt[6]{2^3} \times \sqrt[6]{4^2} = \sqrt[6]{2^3 \times 4^2} = \sqrt[6]{8 \times 16} = \sqrt[6]{128}$$

•
$$\sqrt[3]{5} \div \sqrt[4]{5} = \sqrt[12]{5^4} \div \sqrt[12]{5^3} = \sqrt[12]{5^{4-3}} = \sqrt[12]{5}$$

$$\bullet \quad \sqrt{2} \, \times \sqrt[3]{2} \, \div \sqrt[4]{2} = \, \sqrt[12]{2^6} \, \times \, \sqrt[12]{2^4} \, \div \, \sqrt[12]{2^3} = \, \sqrt[12]{\frac{2^6 \cdot 2^4}{2^3}} = \, \sqrt[12]{\frac{2^{10}}{2^3}} = \, \sqrt[12]{2^7}$$

CAPITULO – II: Álgebra 1

2.0. Inequações lineares

Noção de inequação linear com uma variável

Dá-se nome de inequação a toda expressão matemática literal com uma ou mais variáveis (incógnitas) expressa por uma desigualdade.

As inequações lineares com uma variável, podem ser escritas numa das seguintes formas:

$$x + b > 0$$
; $ax + b < 0$; $ax + b \ge 0$ e $ax + b \le 0$, sendo $a, b \in \mathbb{R}$ e $a \ne 0$

Exemplos:

a)
$$2x - 5 > 0$$
 b) $2 - 4x \ge 0$ c) $2 - \frac{4}{3}x \le 0$ d) $\frac{2}{5} - 4x < 0$

2.1. Resolução de inequações lineares

Resolver uma inequação linear significa determinar o conjunto de todos os valores da incógnita que transforma a inequação numa desigualdade verdadeira. O conjunto dos valores encontrados designa se o conjunto solução da inequação.

A resolução de uma inequação resume-se através de aplicação de alguns princípios de equivalência.

Exemplos:

1. Resolve as seguintes inequações

a)	3x-1 < 4	Como o 1 está a subtrair no primeiro membro, passará para o segundo
	3x < 4 + 1	membro a adicionar; Como o 3 está a multiplicar no primeiro membro, passa
	3x < 5	para o segundo membro a dividir; Repara que o sentido da desigualdade o
	$x < \frac{5}{3}$	não mudou, porque o factor é positivo

b)
$$5-4x>21$$

 $5-4x>21$
 $-4x>21-5$
 $-4x>16$
 $x>\frac{16}{-4}$

Como o 5 está a adicionar, passa para o outro membro a subtrair -4 Como o está a multiplicar, passa para o segundo membro a dividir. Repara que o sentido da inequação mudou porque o factor é negativo.

2.1.1. Resolução de sistema de inequações lineares com uma variável

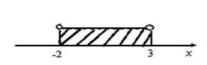
Para resolver sistema de inequações é necessário resolver cada uma das inequações do sistema e determinar o conjunto de intersecção dos seus conjuntos soluções.

$$\begin{cases} 2x + 4 > 0 \\ x + 2 < 5 \end{cases}$$

$$\begin{cases} 2x+4>0\\ x+2<5 \end{cases} \leftrightarrow \begin{cases} 2x>-4\\ x<5-2 \end{cases}$$

$$\leftrightarrow \begin{cases} x>-\frac{4}{2}\\ x<3 \end{cases}$$

$$\leftrightarrow \begin{cases} x>-2\\ x<3 \end{cases}$$



Solução: $x \in]-2;3[$

$$\begin{cases} 3x - 2 > 4 \\ 3x + 2 \le 8 \end{cases}$$

Vamos resolver sepadaramente

$$3x - 2 > 4$$

$$5x + 2 < 8$$

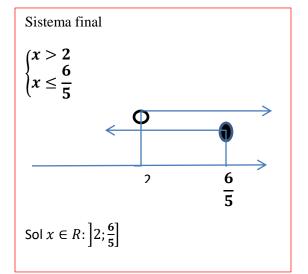
$$3x > 4 + 2$$
 $5x \le 8 - 2$

$$5x < 8 - 2$$

$$5x \leq 6$$

$$x > \frac{6}{3}$$

$$x \leq \frac{6}{5}$$



Olá! Estou aqui para ajudar com qualquer dúvida ou informação de que você precise. Se você tiver alguma pergunta ou precisar de assistência, sinta-se à vontade para entrar em contato comigo no WhatsApp. Estou disponível para conversar e ajudar no que for necessário. Aguardo o seu contato! 879369395

CAPITULO - III

Álebra 2

3.0. Noção de monómios e grau de um monómio

Objectivos de aprendizagem

- Definir monómios;
- > Identificar os componentes de monómios;
- > Determinar o grau de um monómio.
- > Identificar os monómios semelhantes

Monómios são expressões algébricas definidas apenas pela multiplicação entre coeficiente (número) e a parte literal (parte da letra ou das letras).

Exemplos:

2x; 4ab; 10x2; 20xyz; 30abc; 2zy; b3; 100ax3

Coeficiente é o número que multiplica-se com as letras.

Ex: a) $-\frac{\sqrt{3}}{2}XY^2Z^{10}$ - neste monómio o coeficiente é $-\frac{\sqrt{3}}{2}$.

- b) 3x- Coeficiente é 3.
- c) $\frac{1}{5}t^2$ Coeficiente é $\frac{1}{5}$.

Parte literal é a parte composta pelas letras.

Ex: a) $-\frac{\sqrt{3}}{2}XY^2Z^{10}$ neste monómio a parte literal é XY^2Z^{10}

- b) 3x- Parte literal é x.
- c) $\frac{1}{5}t^2$ Parte literal é t^2

Grau de um monómio – é a soma dos expoentes da parte literal.

Ex: a) $-\frac{\sqrt{3}}{2}XY^2Z^{10}$, para este monómio a parte literal $XY^2Z^{10} = X^1Y^2Z^{10}$, o expoente de $X \in \mathbb{N}$, de $Y \in \mathbb{N}$ e de $Z \in \mathbb{N}$. Então, a soma dos expoentes será: 1 + 2 + 10 = 13.

Logo o grau de monómio $-\frac{\sqrt{3}}{2}XY^2Z^{10}$ é 13.

- b) 3x-O grau é 1.
- c) $\frac{1}{5}t^2$ O grau é 2.
- d) $-\frac{klr^{20}}{2}$ O grau é 1 + 1 + 20 = 22
- e) -24- O grau é 0 (zero), porque não tem a parte literal.

3.1. Noção de polinómio

Polinómio – é a soma algébrica de monómios não semelhantes.

3.1.1. Multiplicação de um polinómio por um binómio

Para multiplicar um polinómio por um binómio, deve-se distribuir os termos de binómio aos termos de polinómio. **Binómio** é um polinómio com dois termos.

Ex: o binómio -2x + 5.

Ex: Multipliquemos o binómio -2x + 5 pelo polinómio $7x^2 - 3x + 6$.

Portanto teremos: $(-2x+5) \times (7x^2 - 3x + 6) =$, então, vamos distribuir o termo -2x para todos os termos de polinómio, e em seguida, distribuímos o termo 5 para todos os termos de polinómio. Assim: $= -2x \times (7x^2 - 3x + 6) + 5 \times (7x^2 - 3x + 6) =$ Teremos: (-2×7) $x^2x + (-2\times -3)xx + (-2\times 6)x + (5\times 7)x^2 + (5\times -3)x + (5\times 6) =$; multiplicando os coeficientes e as partes literais, teremos: $= -14x^3 + 6x^2 - 12x + 35x^2 - 15x + 30 =$; passo seguinte, adicionamos os termos semelhantes. Assim: $= -14x^3 + (6+35)x^2 + (-12-15)x + 30 =$; o resultado será: $= -14x^3 + 41x^2 - 27x + 30$.

3.1.2. Divisão através da simplificação de um polinómio por um monómio

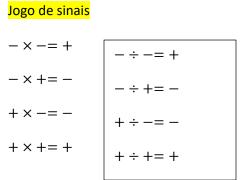
Divisão através da simplificação de um polinómio por um monómio Para dividir um polinómio por um monómio, é necessário identificar o factor comum entre o dividendo(que é o polinómio) e o divisor(que é o monómio).

Exemplo1:

$$\frac{7x^3y - 3x^2y + 6xy^2}{3xy} = \frac{7x^3y}{3xy} - \frac{3x^2y}{3xy} + \frac{6xy^2}{3xy} = \frac{7x^2xy}{3xy} - \frac{3xxy}{3xy} + \frac{6xyy}{3xy} = \frac{7x^2}{3} - \frac{3x}{3} + \frac{6y}{3}$$
$$= \frac{7x^2}{3} - x + 2y$$

Exemplo2:

$$\frac{a^3bc - 10a^2b + 6abc}{-a^3bc} = \frac{a^3bc}{-a^3bc} - \frac{10a^2b}{-a^3bc} + \frac{6abc}{-a^3bc} = \frac{a^3bc}{-a^3bc} - \frac{10a^2ab}{-a^2abc} + \frac{6abc}{-a^2abc}$$
$$= -1 - \frac{10a^2}{-a^2c} + \frac{6}{-a^2} = -1 + \frac{10a^2}{a^2c} + \frac{6}{a^2}$$



3.2. Função Quadrática

No fim da aula o aluno deve ser capaz de:

- > Representar graficamente as funções quadráticas do tipo
- $y = f(x) = ax^2$; $y = f(x) = ax^2 + c$;

3.2.1. Funções Quadráticas – Definição

Chama-se **função quadrática** a toda a função polinomial do grau 2 a uma variável do tipo $f(x) = ax^2 + bx + c \ (com \ a, b, c \in IR \ e \ a \neq 0).$

Exemplos:

$$f(x) = 2x^2 + 3x + 9$$

$$f(x) = -3x^2 + 5x$$

$$f(x) = \frac{1}{2}x^2$$

$$f(x) = x^2 - 4$$

3.2.2. Gráfico de funções Quadráticas

O gráfico de uma função quadrática é uma linha curva contínua chamada **parábola**. Para construir-se o gráfico de uma função quadrática, é necessário ter um número suficiente de pares ordenados que permitam esboçar o gráfico. Para tal, deve-se construir uma tabela de valores e em um sistema cartesiano ortogonal representar os pares ordenados determinados.

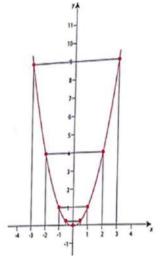
3.2.2.1. Função do tipo $f(x) = ax^2$

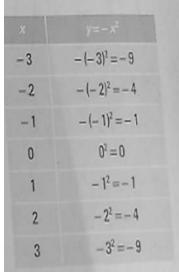
Para estudar a função do tipo $f(x) = ax^2$, tomemos como exemplos as funções: $f(x) = x^2 e f(x) = -x^2$.

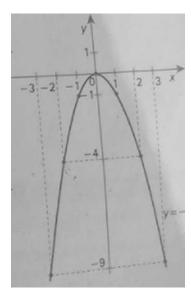
O gráfico da função do tipo $f(x) = ax^2$

Tem a concavidade virada para cima se a > 0 e virada para baixo se a < 0.

X	$f(x) = x^2$	у
-3	$f(-3) = (-3)^2 = 9$	9
-2	$f(-2) = (-2)^2 = 4$	4
-1	$f(-1) = (-1)^2 = 1$	1
0	$f(0) = (0)^2 = 0$	0
+1	$f(1) = (1)^2 = 1$	1
+2	$f(2) = (2)^2 = 4$	4
+3	$f(3) = (3)^2 = 9$	9







3.3. Função do tipo $y = ax^2 + c$, representação gráfica

Funções do tipo $y = ax^2 + c$, são todas aquelas cujo valor de b é igual a zero. Isto é. b = 0. O valor de c é igual à 0 da ordenada na origem.

Ex: De funções do tipo tipo $y = ax^2 + c$

a)
$$y = 2x^2 - 1$$
 b) $y = -x^2 + 4$ c) $y = \frac{2}{5}x^2 - 2$

3.3.1. Gráfico da função
$$y = ax^2 + c$$

Para construir o gráfico da função do tipo $y = ax^2 + c$ devemos determinar alguns pares ordenados, a partir de um dado intervalo dos números inteiros, e representa-los no sistema cartesiano ortogonal.

Ex: Representemos o gráfico da função $y = x^2 - 4$

Primeiro, devemos preencher a tabela abaixo a partir dos valores de x determinamos os valores de y, vamos escolher os números inteiros compreendidos entre -3 à +3. Assim:

x	$y(x)=x^2-4$
-3	-5
-2	0
-1	-3
0	-4
1	-3
2	0
-3	5

$$y(-3) = (-3)^{2} - 4 = 5$$

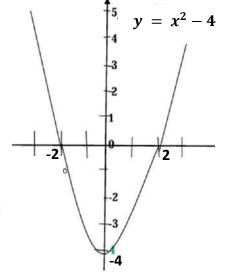
$$y(-2) = (-2)^{2} - 4 = 0$$

$$y(-1) = (-1)^{2} - 4 = -3$$

$$y(0) = (0)^{2} - 4 = 0 - 4 = -4$$

$$y(1) = (1)^{2} - 4 = 3; y(2) = (2)^{2} - 4 = 0$$

$$y(3) = (3)^{2} - 4 = 5$$



Passo seguinte, vamos desenhar o sistema de coordenadas cartesianas e construirmos o gráfico. Assim:

3.3.2. Resolução de problemas práticos que envolvem funções quadráticas

Resolução de problemas práticos que envolvem funções quadráticas

Por exemplo:

Ao atirarmos uma pedra dum ponto para o outro, ao projectar um jacto de água com mangueira numa rega na machamba, os arcos feitos numa ponte, as antenas parabólicas etc. São exemplos práticos de aplicação funções quadráticas.

Ex1:A distancia ao solo de um helicóptero em função do tempo, em segundos é dada por: $S(t) = \frac{1}{2}gt^2$, Onde g representa a aceleração de gravidade que se considera igual aproximadamente igual a $10 \ m/s^2$.

- a) Represente graficamente a situação apresentada.
- b) Determine o instante em que o helicóptero lançou uma caixa de alimentos pelo ar sabendo que o fez quando se encontrava a uma distância do solo, igual a **300***m*.

Resolução: a) A função quadrática é : $S(t) = \frac{1}{2}gt^2$; podemos substituir gpor, $10 m/s^2$. Assim:

 $S(t)=rac{1}{2}gt^2\leftrightarrow S(t)=rac{1}{2} imes 10t^2\leftrightarrow S(t)=5t^2$, agora podemos preencher uma tabela que tem os valores de, t e S.Como o tempo é sempre positivo vamos escolher um intervalo de [0; 4]

Ass	im:

t	$S(t)=5t^2$
0	0
1	5
2	20
3	45
4	80
7,745	300

$$S(0) = 5(0)^2 = 0$$

$$S(1) = 5(0)^{2} = 5$$

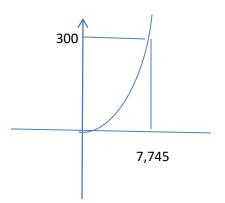
$$S(1) = 5(1)^{2} = 5$$

$$S(2) = 5(2)^{2} = 20$$

$$S(3) = 5(3)^{2} = 45$$

$$S(2) = 5(2)^2 = 20$$

$$S(3) = 5(3)^2 = 45$$



b)
$$S(t)=5t^2$$
; substituímos $S(t)=300\leftrightarrow 300=5t^2\leftrightarrow 5t^2=300\leftrightarrow t^2=rac{300}{5}$

 $t^2=60 \leftrightarrow t_{1;2}=\pm \sqrt{60}=\pm 7.745 s$; portanto o valor que nos interessa é o positivo t = 7.745s.

Exercícios

- 1. Um estudante de ensino a distancia, depois de ter prestado uma lição de matemática, foi jogar futebol com os amigos. Durante o jogo fez um remate, a velocidade inicial da bola foi de, 2m/s. A altura dada pela bola ao fim de t se gundos é dada pela lei $S(t) = 81 - 9t^2$.
- a) Em que instante a bola bate no solo?
- b) Se a bola permanecer 2 segundos no ar, qual seria a altura nesse instante?
- c) Se o adversaria saltasse e intersectasse a bola com a cabeça a uma altura de 2 metros, em que instante alcançaria a bola?

CAPITULO - IV

4.0. Noções básicas de estatística

Objectivos:

- ✓ Definir população e amostra;
- ✓ Diferencial população da amostra;
- ✓ Organizar os dados em tabelas.

A **estatística** é um ramo da matemática que tem por objectivo obter, organizar e analisar informação.

Um estudo estatístico incide sobre um conjunto cujos elementos têm uma ou mais características comuns.

4.1. Os conceitos muito utilizados em estatística:

• População: conjunto cujos elementos têm uma ou mais características comuns;

Por exemplo:

Todos os alunos de uma determinada escola;

Conjunto dos números racionais.

Amostra: conjunto finito da população que é representativo desta ou é uma parte da população;

Amostra é uma parcela representativa da população que é examinada com o propósito de tirarmos conclusões sobre essa população.

Por exemplo: 50 Alunos da Escola Secundaria de Xai – Xai

Variáveis (caracteres) estatísticas

Variável estatístico ou Caracter estatístico é uma propriedade que permite caracterizar os indivíduos de uma população. As variáveis estatísticas podem ser: Qualitativas (não mensuráveis) e quantitativas (mensuráveis).

Variável estatístico qualitativos ou nominais (não mensuráveis): Que não se podem medir. Exemplos:

- a) A cor dos olhos
- b) A Profissão
- c) cor dos cabelos, ...

As variáveis estatísticas qualitativas podem ser definidas em modalidades.

Exemplo: Na variável qualitativa "profissão", podem se considerar modalidades: professor, médico, eletricista, mecânico, etc.

Variável estatístico quantitativos ou numéricas (mensuráveis): Que se podem medir.

Exemplo:

- a) Temperatura
- b) altura
- c) idade, ...

As variáveis quantitativas podem ser discretas ou continuas.

Discretas quando não podem tomar todos valores de um determinado intervalo real.

Exemplo:

- a) Número de filhos de uma mãe.
- b) Número de golos marcados num jogo de futebol.

Continuas quando pode tomar quaisquer valores de um determinado intervalo real.

Exemplo:

- a) Altura dos alunos de uma turma da 9^a classe;
- b) As temperaturas registadas num determinado lugar durante um dia

4.2. Distribuição e determinação de frequência

Recolha e organização de dados

Um estudo estatístico envolve a recolha, organização e análise dos dados. A análise e interpretação dos dados permite fazer previsões e tomar decisões.

Tabelas de frequência absoluta, relativa percentual e acumuladas Para organizar dados e fazer a respectiva análise, usam-se tabelas (frequência absoluta, relativa percentual e acumuladas) e gráficas (barras, linhas e circulares).

Exemplo: O número de golos obtidos numa jornada de futebol no moçambola 2023 foi o seguinte:

0	1	2	0	1	2	0	1	2	1
2	3	2	2	2	0	3	3	0	3

Vamos organizar esses dados numa tabela de frequências:

Numero de dolos	Frequência absoluta (fi)	Frequência relativa (fr)	Frequência absoluta acumuladas (Fi)	Frequência relativa acumuladas (Fr)
0	5	0.25	5	0.25
1	4	0.2	9	0.45
2	7	0.35	16	0.8
3	4	0.2	20	1
	n=20			

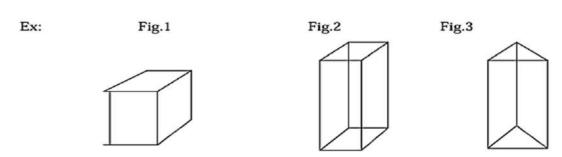
1.Na Cidade da Maxixe, fez-se um levantamento do número de pessoas de cada agregado familiar. Num dos bairros obteve-se os seguintes resultados 5 2 4 4 3 5 1 5 5 6 3 3 4 4 5 6 6 4 2 3 a) Construa uma tabela de frequências de acordo com os dados.

CAPITULO - V

5.0. Cálculo de áreas e volume de prisma

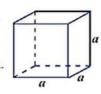
Conceito de prisma

Prisma – é um poliedro em que as bases são dois polígonos geometricamente iguais e paralelos e as faces laterais são paralelogramos.



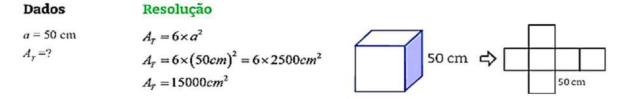
Área total do cubo

A área total do cubo (A_1) é a soma das áreas das faces que formam o cubo. Para calcular a área total do cubo, basta calcular a área de uma das faces e multiplicar por 6. Assim: $A_T = 6 \times a^2$, onde a é a medida da aresta.



Exemplo:

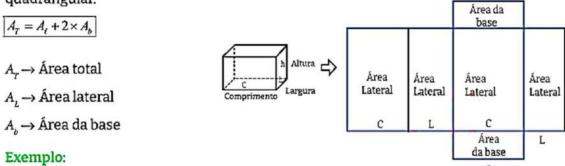
Calcula a área total de uma caixa com a forma de um cubo cujos lados medem 50 cm.



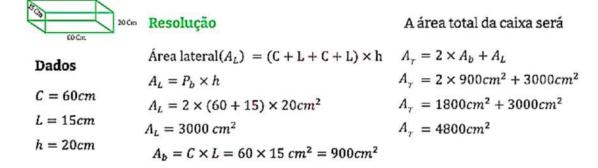
Resposta: A área total da caixa é de 15 000 cm2

Área total do prisma recto

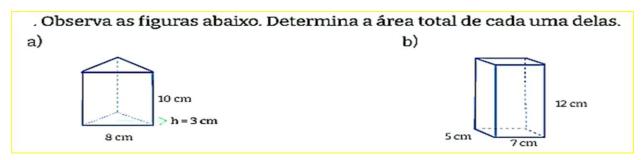
Num prisma recto, as faces laterais podem ser rectângulo ou quadrados. A área total de um prisma é a soma da área da superfície lateral com o dobro das áreas das bases. A área da base pode ser calculada usando a fórmula da área da superfície rectangular ou quadrangular.



Determine a área total de uma caixa cujas dimensões são 60cm, 20cm e 15cm.



Resposta: A área total da caixa é de 4800 cm²



Volume prisma recto

Prisma recto é um sólido geométrico cujas faces laterais são rectangulares. As bases podem ser triangulares, quadrangulares, rectangulares, pentagonais ou hexagonais.

O volume de um prisma é o produto da medida da área da base pela medida da altura.

$$V_{prisma} = A_{base} \times h$$

Considerando que área da base do prisma recto é dada pela fórmula $A = C \times L$, então o volume é dado pelo produto do comprimento (C), pela largura (L) e pela altura (h).

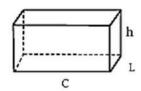
Exemplo:

Determine o volume do prisma recto cujas dimensões são C = 6 dm; L = 2 dm e h = 4 dm.

Resposta: O volume do prisma recto é igual a 48 dm3.

Dados Resolução

$$C = 6 dm$$
 $V = C \times L \times h = 6 dm \times 2 dm \times 4 dm$
 $L = 2 dm$ $V = 12 dm^2 \times 4 dm$
 $h = 4 dm$ $V = 48 dm^3$.

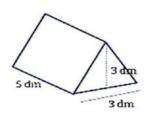


Se a base do prisma for triangular, o volume é dado pela fórmula: $V_{prismu} = A_b \times h$

$$V_{prixmu} = A_b \times h$$
 onde

$$A_b = \frac{b \times h}{2}$$

Observa a figura abaixo e determina o seu volume.



Dados Resolução

$$h_{p} = 5dm \qquad V_{p} = A_{b} \times h$$

$$h_{b} = 3dm \qquad A_{b} = \frac{b \times h}{2}$$

$$A_{b} = \frac{3 \times 3}{2} dm^{2}$$

$$A_{b} = \frac{9}{2} dm^{2} = 4,5 dm^{2}$$

$$V_{p} = A_{b} \times h$$

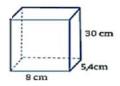
$$V_{p} = 4.5 dm^{2} \times 5 dm$$

$$V_{p} = 22.5 dm^{3}$$

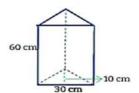
Resposta: O volume do prisma é de 22,5 dm3.

Calcula o volume de cada uma das figuras abaixo.

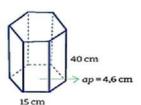
a



b)



c)



Volume de cubo

Sendo que no cubo as arestas têm as medidas iguais, o volume do cubo é dado pela fór-

mula:
$$V = a \times a \times a$$
 ou $V = a^3$

Exemplo:

Determina a medida do volume do cubo cuja aresta é igual a 2 cm.

Resolução

a = 2 cm

 $V = a^3 = (2cm)^3 = 8cm^3$.

Resposta: O volume do cubo é de 8 cm3

Referências Bibliográficas

- ❖ Abrantes, P., & Carvalho, R. F. (1989). M9 Exercícios de Matemática 9º ano, Lisboa, Texto Editores.
- Carvalho, R. F., & Martins, Z. A. (1999). Matemática pela prática, 1ª edição, Maputo, Moçambique Editora.
- ❖ INDE (2008). Programa de Matemática da 9ª classe. Maputo-Moçambique.
- ❖ Sapatinha, João Carlos Sapatinha (2013) Matemática 9ª Classe, 1ª Edição, Maputo
- ❖ Langa, Heitor/ Chuquela, Neto João (2014) Matemática 9ª Classe, 1ª Edição, Maputo

