Resoluções de Exame de Admissao ACIPOL 2025

Resoluções de Matemática October 9, 2025

Bem-vindo(a) à nossa aplicação de preparação para exames! Chegou a hora de se destacar nos seus testes e conquistar o sucesso acadêmico que você merece. Apresentamos o "Guião de Exames Resolvidos": a sua ferramenta definitiva para uma preparação eficaz e resultados brilhantes!

Questao 1:

Racionalizando a expressão $\frac{7}{\sqrt{3}}$, tem-se:

1.
$$\frac{7\sqrt{3}}{9}$$

2.
$$\frac{7\sqrt{3}}{3}$$

3.
$$\frac{7}{3}$$

4.
$$\frac{\sqrt{3}}{3}$$

Solução (passo a passo):

$$[label=0.]$$

1. Para eliminar a raiz do denominador, multiplicamos numerador e denominador por $\sqrt{3}$:

$$\frac{7}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{7\sqrt{3}}{\sqrt{3} \cdot \sqrt{3}}.$$

2. Calculamos $(\sqrt{3})^2 = 3$. Assim:

$$\frac{7\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}} = \frac{7\sqrt{3}}{3}.$$

3. Logo, comparando com as alternativas, a correta é a B: $\frac{7\sqrt{3}}{3}$.

Questão 2

Enunciado: O valor numérico da expressão

$$\sqrt[3]{64} - \sqrt{81} + \sqrt{28}$$

é:

Alternativas:

[A.]

- 1. 2
- 2. 0
- 3. 1
- 4. -1

Resolução passo a passo:

1. Calculamos cada termo separadamente:

$$\sqrt[3]{64} = 4$$
 (pois $4^3 = 64$), $\sqrt{81} = 9$, $\sqrt{2^8} = \sqrt{256} = 16$.

2. Substituímos esses valores na expressão:

$$4 - 9 + 16$$
.

3. Efetuando as operações:

$$4 - 9 = -5$$
, $-5 + 16 = 11$.

4. Portanto, o valor numérico da expressão é 11.

Resposta: Nenhuma das alternativas apresentadas está correta; o resultado é 11.

Enunciado: Considere a expressão: "Faz sol ou está vento e chove". Sendo P: faz sol; Q: está vento; e R: chove. Exprima por meio do simbolismo lógico a expressão dada.

Alternativas:

[A.]

- 1. $P \wedge (Q \vee R)$
- 2. $Q \vee (P \wedge R)$
- 3. $P \vee (Q \wedge R)$
- 4. $R \vee (P \wedge Q)$

Resolução passo a passo:

- 1. A frase é: "Faz sol ou (está vento e chove)". O conectivo principal é **"ou"** (disjunção), e dentro da segunda parte temos **"e"** (conjunção).
- 2. Traduzindo: "Faz sol" $\to P$ "Está vento" $\to Q$ "Chove" $\to R$ "Está vento e chove" $\to Q \land R$ "Faz sol ou (está vento e chove)" $\to P \lor (Q \land R)$
 - 3. Portanto, o simbolismo lógico correto é:

$$P \vee (Q \wedge R)$$

Resposta: $\boxed{\text{C. }P\vee (Q\wedge R)}$

Questão 4

Enunciado: A expressão $A \cup B' \cap A'$ (isto é, $(A \cup B') \cap A'$) é equivalente a: Alternativas:

[A.]

- 1. $B' \cap A'$
- $2. (A \cup B)'$
- 3. $B' \cup A'$
- 4. $(A \cap B)'$

Resolução passo a passo:

1. Começamos com:

$$(A \cup B') \cap A'$$

2. Distribuímos a interseção:

$$(A \cap A') \cup (B' \cap A')$$

3. Como $A \cap A' = \emptyset$, obtemos:

$$\emptyset \cup (B' \cap A') = B' \cap A'$$

4. Portanto, a expressão é equivalente a:

$$B' \cap A'$$

Resposta: A. $B' \cap A'$

Enunciado: Quantas soluções tem a equação $\{x,y,z\}=\{2,3,4\}$? Alternativas:

[A.]

- 1. 3
- 2. 2
- 3. 4
- 4. 1

Resolução passo a passo:

- 1. A igualdade entre dois conjuntos implica que contêm **os mesmos elementos**, sem importar a ordem. Assim, o conjunto $\{x,y,z\}$ deve conter exatamente os números 2, 3 e 4.
- 2. Cada permutação diferente desses três valores atribuídos a x,y,z constitui uma solução distinta.
 - 3. O número de permutações possíveis é:

$$3! = 3 \times 2 \times 1 = 6.$$

4. Portanto, existem 6 soluções distintas para o conjunto ordenado (x, y, z).

Resposta: 6

(Nota: Nenhuma das alternativas A-D apresenta o valor correto; a opção correta seria 6).

Questão 6

Enunciado: Determine o domínio de existência da expressão

$$\sqrt{2x+3} + \sqrt{x-9}.$$

Alternativas:

[A.]

- 1. $[9; +\infty[$
- 2. $]-\frac{3}{2};9[$
- 3. $\left[-\frac{3}{2};9\right]$
- 4. $\left[-\frac{3}{2};9\right[$

Resolução passo a passo:

1. As expressões sob o radical (dentro das raízes quadradas) devem ser **não negativas**:

$$\begin{cases} 2x + 3 \ge 0 \\ x - 9 \ge 0 \end{cases}$$

2. Resolvendo cada desigualdade:

$$2x + 3 \ge 0 \Rightarrow x \ge -\frac{3}{2}, \quad x - 9 \ge 0 \Rightarrow x \ge 9.$$

3. O domínio é a **interseção** desses intervalos:

$$x > 9$$
.

4. Logo, o domínio é:

$$[9; +\infty[$$
.

Resposta: A. $[9; +\infty[$

Questão 7

Enunciado: Resolva, em ordem a k, a seguinte equação:

$$\frac{k+2}{a} = \frac{k-1}{b}.$$

Alternativas:

[A.]

$$1. \ \frac{a+2b}{a-b}$$

$$2. \ \frac{2b-a}{b-a}$$

$$3. \ \frac{-a-2b}{a-b}$$

4.
$$\frac{b-a}{2b-a}$$

Resolução passo a passo:

1. Começamos com:

$$\frac{k+2}{a} = \frac{k-1}{b}.$$

2. Multiplicamos em cruz (produto dos extremos pelos meios):

$$b(k+2) = a(k-1).$$

3. Desenvolvemos os parênteses:

$$bk + 2b = ak - a$$
.

4. Isolamos os termos com k de um lado e os constantes do outro:

$$bk - ak = -a - 2b.$$

5. Colocamos k em evidência:

$$k(b-a) = -a - 2b.$$

6. Dividimos ambos os lados por (b-a):

$$k = \frac{-a - 2b}{b - a}.$$

7. Podemos mudar o sinal do numerador e denominador (multiplicando ambos por -1):

$$k = \frac{a+2b}{a-b}.$$

Resposta: $A. \frac{a+2b}{a-b}$

Questão 8

Enunciado: Se $a^{2x} = 9$ e $a^x = 3$, calcule $a^{4x} + a^{2x}$.

Alternativas:

[A.]

- 1. 9
- 2. 27
- 3. 72
- 4. 90

Resolução passo a passo:

- 1. Temos que $a^x = 3$.
- 2. Elevando ambos os lados ao quadrado:

$$a^{2x} = (a^x)^2 = 3^2 = 9.$$

3. Elevando novamente ao quadrado:

$$a^{4x} = (a^{2x})^2 = 9^2 = 81.$$

4. Substituímos em $a^{4x} + a^{2x}$:

$$a^{4x} + a^{2x} = 81 + 9 = 90.$$

Resposta: D. 90

Questão 9

Enunciado: Qual dos seguintes sistemas representa um quadrado?

Alternativas:

[A.]

1. $\{1 \le x \ge 0; 0 \le y \le 1\}$

3. $\{1 \ge x \ge 0; 0 \le y \le 2\}$

4.
$$\{x=2; y=2\}$$

Resolução passo a passo:

1. A figura é um quadrado quando os dois intervalos (em x e y) possuem o mesmo comprimento.

2. Alternativa A: x varia de 0 a 1 \rightarrow comprimento = 1 y varia de 0 a 1 \rightarrow comprimento = 1 Forma um quadrado de lado 1.

3. Alternativa B: São equações de retas → formam uma interseção, não um quadrado

4. Alternativa C: x varia de 0 a 1 \rightarrow comprimento = 1 y varia de 0 a 2 \rightarrow comprimento = 2 Forma um retângulo

5. Alternativa D: Define apenas um ponto (x=2, y=2)

Resposta: A.
$$\{1 \le x \ge 0; 0 \le y \le 1\}$$

Questão 10

Enunciado: A diferença entre os quadrados de dois números naturais é 27. Escreva o problema por meio de equação.

Alternativas:

[A.]

1.
$$x^2 - (x-1)^2 = 27$$

2.
$$x^2 - (x+1)^2 = 27$$

3.
$$x^2 + (x-1)^2 = 27$$

4.
$$(x-1)^2 - x^2 = 27$$

Resolução passo a passo:

1. Seja o número maior x e o menor x-1. Assim, os dois números naturais consecutivos são x e x-1.

2. A diferença entre os quadrados é dada por:

$$x^2 - (x - 1)^2 = 27$$

3. Verificando a diferença:

$$x^{2} - (x - 1)^{2} = x^{2} - (x^{2} - 2x + 1) = 2x - 1$$

e queremos que 2x - 1 = 27. Logo, x = 14. Os números são 14 e 13, e realmente $14^2 - 13^2 = 196 - 169 = 27$.

$$14^2 - 13^2 = 196 - 169 = 27.$$

Resposta: A. $x^2 - (x-1)^2 = 27$

Enunciado: A diferença entre os quadrados de dois números naturais é 27. Escreva o problema por meio de equação.

Alternativas:

[A.]

1.
$$x^2 - (x-1)^2 = 27$$

2.
$$x^2 - (x+1)^2 = 27$$

3.
$$x^2 + (x-1)^2 = 27$$

4.
$$(x-1)^2 - x^2 = 27$$

Resolução passo a passo:

- 1. Seja o número maior x e o menor x-1. Assim, os dois números naturais consecutivos são x e x-1.
 - 2. A diferença entre os quadrados é dada por:

$$x^2 - (x - 1)^2 = 27$$

3. Verificando a diferença:

$$x^{2} - (x - 1)^{2} = x^{2} - (x^{2} - 2x + 1) = 2x - 1$$

e queremos que 2x-1=27. Logo, x=14. Os números são 14 e 13, e realmente $14^2-13^2=196-169=27$.

$$14^2 - 13^2 = 196 - 169 = 27.$$

Resposta: A. $x^2 - (x - 1)^2 = 27$

Questão 11

Enunciado: Um ponto A que se movimenta sobre uma circunferência tem sua posição p(t), considerada na vertical, no instante t descrita pela relação

$$p(t) = 100 - 20(t)$$
, para $t \ge 0$.

Neste caso, a medida do diâmetro dessa circunferência é:

Alternativas:

- 1. 30
- 2. 40
- 3. 120
- 4. 80

- 1. A equação p(t) = 100 20(t) representa um movimento harmônico simples vertical, cujo centro está em p = 100 e a amplitude é 20.
- 2. A amplitude (A) de uma função do tipo p(t) = c + A(t) indica o raio da circunferência em que o ponto se move.

Raio
$$r = 20$$

3. O diâmetro (D) é o dobro do raio:

$$D = 2r = 2 \times 20 = 40.$$

Resposta: B. 40

Questão 12

Enunciado: Se um agropecuário A possui 30 cabeças de gado bovino e o agropecuário B possui $\frac{3}{5}$ das de A, quantas cabeças de gado bovino tem o agropecuário B?

Alternativas

[A.]

- 1. 9
- 2. 16
- 3. 18
- 4. 27

Resolução passo a passo:

1. O número de cabeças de gado de A é:

$$A = 30$$

2. O agropecuário B possui $\frac{3}{5}$ das de A, logo:

$$B = \frac{3}{5} \times 30$$

3. Efetuando a multiplicação:

$$B = \frac{90}{5} = 18$$

Resposta: C. 18

Enunciado: Dada a função $f(x) = 1 + 2\cos(x)$, sendo x um ângulo do primeiro quadrante, determine o valor de x que faz com que f(x) = 2.

Alternativas:

[A.]

- $1. \ \frac{\pi}{3}$
- $2. \pi$
- 3. $\frac{18\pi}{6}$
- 4. $\frac{\pi}{5}$

Resolução passo a passo:

1. Igualamos a função a 2:

$$f(x) = 2 \Rightarrow 1 + 2\cos(x) = 2$$

2. Subtraindo 1 dos dois lados:

$$2\cos(x) = 1$$

3. Dividindo ambos os lados por 2:

$$\cos(x) = \frac{1}{2}$$

4. No primeiro quadrante, o ângulo cujo cosseno é $\frac{1}{2}$ é:

$$x = \frac{\pi}{3}$$

Resposta: $A. \frac{\pi}{3}$

Questão 14

Enunciado: Dada a função

$$f(x) = {}^{2}(x) + 2\cos(x),$$

determine o valor numérico da função para $x = \frac{\pi}{4}$.

Alternativas:

- 1. $0.5 + \sqrt{3}$
- 2. $1 + \sqrt{2}$
- 3. $4 \sqrt{2}$

4.
$$0.5 + \sqrt{2}$$

1. Calculamos $^2(x)$ e $\cos(x)$ para $x = \frac{\pi}{4}$:

$$\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \quad \Rightarrow \quad {}^{2}\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}\right)^{2} = \frac{1}{2}$$

$$\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

2. Substituímos na função:

$$f\left(\frac{\pi}{4}\right) = \frac{1}{2} + 2 \cdot \frac{\sqrt{2}}{2} = \frac{1}{2} + \sqrt{2}$$

Resposta: D. $0.5 + \sqrt{2}$

Questão 15

Enunciado: Calcule o valor de k na equação

$$x^2 - kx + 36 = 0$$

de modo que uma das raízes seja o quádruplo da outra.

Alternativas:

[A.]

- 1. k = 15 ou k = 10
- 2. k = 15 ou k = -15
- 3. k = -15 ou k = 10
- 4. k = -15 ou k = -10

Resolução passo a passo:

1. Seja a equação:

$$x^2 - kx + 36 = 0$$

com raízes $r \in 4r$ (uma raiz é o quádruplo da outra).

2. A soma das raízes é:

$$r + 4r = 5r = k \implies k = 5r$$

3. O produto das raízes é:

$$r \cdot 4r = 4r^2 = 36$$
 \Rightarrow $r^2 = 9$ \Rightarrow $r = 3$ ou $r = -3$

4. Substituindo na soma das raízes para encontrar k: - Se r=3: $k=5\cdot 3=15$ - Se r=-3: $k=5\cdot (-3)=-15$

Resposta: B. k = 15 ou k = -15

Enunciado: Torne irreduzível a seguinte expressão:

$$\left(\frac{a^2 + 2ax + x^2 - 4b^2}{ax + 2ab + x^2 - 4b^2}\right)^{-1}.$$

Alternativas:

[A.]

$$1. \ \frac{x+2b}{a+x+2b}$$

$$2. \ \frac{a+x+2b}{x+2b}$$

$$3. \ \frac{2b}{a+2b}$$

4.
$$\frac{x}{a+x}$$

Resolução passo a passo:

1. Começamos por factorizar numerador e denominador (antes de aplicar o expoente -1):

$$a^{2} + 2ax + x^{2} - 4b^{2} = (a+x)^{2} - (2b)^{2} = (a+x-2b)(a+x+2b).$$

$$ax + 2ab + x^2 - 4b^2 = x^2 + ax + 2ab - 4b^2$$
.

Observamos que

$$(x+2b)(x+a-2b) = x^2 + ax + 2ab - 4b^2$$

logo

$$ax + 2ab + x^2 - 4b^2 = (x + 2b)(a + x - 2b).$$

2. Substituindo as factorizações na fração original:

$$\frac{a^2 + 2ax + x^2 - 4b^2}{ax + 2ab + x^2 - 4b^2} = \frac{(a + x - 2b)(a + x + 2b)}{(x + 2b)(a + x - 2b)}.$$

3. Cancelamos o factor comum (a + x - 2b):

$$\frac{(a+x+2b)}{(x+2b)}.$$

4. A expressão dada tem expoente -1, portanto tomamos o recíproco:

$$\left(\frac{a+x+2b}{x+2b}\right)^{-1} = \frac{x+2b}{a+x+2b}.$$

Resposta: A.
$$\frac{x+2b}{a+x+2b}$$

Enunciado: A assíntota horizontal da função

$$f(x) = \frac{4x^3 + 3x}{5 - 3x^3}$$

é igual a:

Alternativas:

[A.]

- 1. $\frac{4}{7}$
- 2. $-\frac{4}{7}$
- 3. $-\frac{4}{3}$
- 4. $\frac{4}{3}$

Resolução passo a passo:

- 1. Para determinar a assíntota horizontal, analisamos o comportamento de f(x) quando $x \to \infty$.
- 2. O grau do numerador (3) é igual ao grau do denominador (3), então a assíntota horizontal é dada pelo quociente dos coeficientes dos termos de maior grau.

Coeficiente líder do numerador: 4, Coeficiente líder do denominador: -3

3. Assim:

$$y = \frac{4}{-3} = -\frac{4}{3}.$$

Resposta: $\left| C. -\frac{4}{3} \right|$

Questão 19

Enunciado: João está num hotel e pretende visitar o centro histórico da cidade. Partindo do hotel, existem três linhas de comboio que levam ao shopping. E existem quatro linhas (metrópoles) que se deslocam do shopping para o centro histórico. De quantas maneiras João pode sair do hotel e chegar até ao centro histórico passando pelo shopping?

Alternativas:

- 1. 12
- 2. 18
- 3. 7

4. 6

Resolução passo a passo:

- 1. Para cada escolha de linha de comboio do hotel ao shopping (há 3 possibilidades), João pode escolher, independentemente, qualquer uma das 4 linhas do shopping ao centro histórico.
 - 2. O número total de maneiras é o produto do número de escolhas em cada etapa:

$$3 \times 4 = 12.$$

Resposta: A. 12

Questão 20

Enunciado: A função quadrática

$$y = (m-4)x^2 - (m+2)x - 1$$

está definida quando:

Alternativas:

[A.]

- 1. m = 4
- 2. $m \neq 4$
- 3. $m = \pm 2$
- 4. $m \neq \pm 2$

Resolução passo a passo:

1. Uma função quadrática tem a forma geral:

$$y = ax^2 + bx + c,$$

onde $a \neq 0$.

2. No caso dado:

$$a = (m-4), \quad b = -(m+2), \quad c = -1.$$

3. Para que a função seja realmente **quadrática**, o coeficiente de x^2 não pode ser nulo:

$$m-4 \neq 0 \quad \Rightarrow \quad m \neq 4.$$

4. Assim, se m=4, o termo x^2 desaparece e a função deixaria de ser quadrática (seria linear).

Resposta: B. $m \neq 4$

Enunciado: Dadas duas funções f e g de \mathbb{R} em \mathbb{R} , tais que:

$$f(x) = \begin{cases} x - 1, & \text{se } x \ge 1, \\ 2x, & \text{se } x < 1, \end{cases}$$
 e $g(x) = 2x + 1.$

A função composta $(g \circ f)(x)$ é dada por:

Alternativas:

[A.]

1.
$$\begin{cases} 2x - 1, & \text{se } x \ge 1, \\ 4x + 1, & \text{se } x > 1 \end{cases}$$

2.
$$\begin{cases} 2x - 1, & \text{se } x \ge 1, \\ 4x + 1, & \text{se } x < 1 \end{cases}$$

3.
$$\begin{cases} 2x - 1, & \text{se } x < 1, \\ 4x + 1, & \text{se } x \ge 1 \end{cases}$$

4.
$$\begin{cases} 2x - 1, & \text{se } x \le 1, \\ 4x + 1, & \text{se } x < 1 \end{cases}$$

Resolução passo a passo:

1. A função composta é:

$$(g \circ f)(x) = g(f(x)) = 2 \cdot f(x) + 1.$$

2. Caso 1: Se x > 1,

$$f(x) = x - 1$$
 \Rightarrow $g(f(x)) = 2(x - 1) + 1 = 2x - 2 + 1 = 2x - 1.$

3. Caso 2: Se x < 1,

$$f(x) = 2x \implies g(f(x)) = 2(2x) + 1 = 4x + 1.$$

4. Assim,

$$(g \circ f)(x) = \begin{cases} 2x - 1, & \text{se } x \ge 1, \\ 4x + 1, & \text{se } x < 1. \end{cases}$$

Resposta: B. $(g \circ f)(x) = \{2x - 1, x \ge 1; 4x + 1, x < 1\}$

Questão 22

Enunciado: A função inversa de $f(x) = \sqrt[3]{x+2}$ é:

Alternativas:

[A.]

1.
$$f^{-1}(x) = -x^3 + 2$$

2.
$$f^{-1}(x) = x^3 - 2$$

3.
$$f^{-1}(x) = x^3 + 2$$

4.
$$f^{-1}(x) = -x^3 - 2$$

1. Começamos escrevendo:

$$y = \sqrt[3]{x+2}.$$

2. Para achar a inversa, trocamos x por y e y por x:

$$x = \sqrt[3]{y+2}.$$

3. Elevamos ambos os lados ao cubo para eliminar a raiz cúbica:

$$x^3 = y + 2.$$

4. Isolamos y:

$$y = x^3 - 2.$$

5. Assim, a função inversa é:

$$f^{-1}(x) = x^3 - 2.$$

Resposta: B. $f^{-1}(x) = x^3 - 2$

Questão 23

Enunciado: Uma pesquisa realizada com 800 pessoas sobre a preferência pelos telejornais de uma cidade evidenciou que:

- 200 entrevistados assistem apenas ao telejornal A,
- $\bullet~250$ assistem apenas ao telejornal B,
- $\bullet\,$ 50 assistem aos dois telejornais A e B.

Das pessoas entrevistadas, qual a probabilidade de se sortear ao acaso uma pessoa que assiste o telejornal A ou o telejornal B?

Alternativas:

- 1. 0.625
- 2. 0.375
- 3. 0.3125
- 4. 0.0625

1. Temos:

$$n(A \text{ apenas}) = 200, \quad n(B \text{ apenas}) = 250, \quad n(A \cap B) = 50, \quad n(U) = 800.$$

2. O número total de pessoas que assistem A ou B é dado por:

$$n(A \cup B) = n(A) + n(B) - n(A \cap B).$$

3. Como:

$$n(A) = 200 + 50 = 250, \quad n(B) = 250 + 50 = 300,$$

então:

$$n(A \cup B) = 250 + 300 - 50 = 500.$$

4. A probabilidade pedida é:

$$P(A \cup B) = \frac{n(A \cup B)}{n(U)} = \frac{500}{800} = 0.625.$$

Resposta: A. 0.625

Questão 24

Enunciado: Se os pontos (m+2n, m-4) e (2-m, 2n) representam o mesmo ponto do plano cartesiano, então mn é igual a:

Alternativas:

[A.]

- 1. -2
- 2. 0
- 3. $\sqrt{2}$
- 4. 0.5

Resolução passo a passo:

1. Como os pontos representam o mesmo ponto, suas coordenadas correspondentes são iguais:

$$\begin{cases} m + 2n = 2 - m \\ m - 4 = 2n \end{cases}$$

2. Da primeira equação:

$$m + 2n = 2 - m \Rightarrow 2m + 2n = 2 \Rightarrow m + n = 1.$$
 (1)

3. Da segunda equação:

$$m-4 = 2n \Rightarrow m = 2n + 4.$$
 (2)

4. Substituímos (2) em (1):

$$(2n+4) + n = 1 \Rightarrow 3n+4 = 1 \Rightarrow 3n = -3 \Rightarrow n = -1.$$

5. Substituindo n = -1 em (2):

$$m = 2(-1) + 4 = 2.$$

6. Calculamos:

$$mn = 2 \times (-1) = -2.$$

Resposta: A. -2

Questão 25

Enunciado: A equação $2\cos(x)-6=-4$, no intervalo $0^{\circ} \le x \le 180^{\circ}$, tem como solução: Alternativas:

[A.]

- 1. -0°
- 2. 0°
- 3. 90°
- 4. 45°

Resolução passo a passo:

1. Dada a equação:

$$2\cos(x) - 6 = -4$$

2. Isolamos $\cos(x)$:

$$2\cos(x) = -4 + 6 \Rightarrow 2\cos(x) = 2$$
$$\cos(x) = 1$$

3. Procuramos o valor de x tal que $\cos(x)=1$ no intervalo $0^{\circ} \le x \le 180^{\circ}$. Sabemos que:

$$cos(x) = 1$$
 quando $x = 0^{\circ}$.

4. Logo, a solução é:

$$x = 0^{\circ}$$
.

Resposta: $B. 0^{\circ}$

Questão 26

Enunciado: O conjunto dos números reais tais que

$$\left| \frac{x-2}{3} \right| = 1$$

é:

Alternativas:

[A.]

1. $\{1; -5\}$

- 2. {5; 1}
- $3. \{-1; -5\}$
- $4. \{-1; 5\}$

1. Começamos com a equação:

$$\left| \frac{x-2}{3} \right| = 1$$

2. Pela definição do valor absoluto:

$$\frac{x-2}{3} = 1$$
 ou $\frac{x-2}{3} = -1$

3. Resolvendo a primeira equação:

$$\frac{x-2}{3} = 1 \Rightarrow x-2 = 3 \Rightarrow x = 5$$

4. Resolvendo a segunda equação:

$$\frac{x-2}{3} = -1 \Rightarrow x-2 = -3 \Rightarrow x = -1$$

5. Assim, o conjunto solução é:

$$S = \{-1, 5\}.$$

Resposta: $\boxed{D. \{-1; 5\}}$

Questão 27

Enunciado: No conjunto dos números reais, o conjunto solução da inequação

$$\frac{x^2 + 2x - 3}{x + 1} \le 3$$

é:

Alternativas:

- 1. $[-1, -2[\cup[-3; \infty[$
- 2. $]-\infty, -3]\cup]-1, 3]$
- 3. $]-\infty,-2]\cup]-1,3]$
- 4. $]-\infty, -3]\cup]-1, -3]$

1. Começamos por reescrever a inequação:

$$\frac{x^2 + 2x - 3}{x + 1} - 3 \le 0$$

2. Colocamos tudo sobre o mesmo denominador:

$$\frac{x^2 + 2x - 3 - 3(x+1)}{x+1} \le 0 \quad \Rightarrow \quad \frac{x^2 + 2x - 3 - 3x - 3}{x+1} \le 0$$

3. Simplificando o numerador:

$$\frac{x^2 - x - 6}{x + 1} \le 0$$

4. Fatorando o numerador:

$$\frac{(x-3)(x+2)}{x+1} \le 0$$

5. Determinamos os pontos críticos: x = -2, -1, 3. Verificamos os sinais nos intervalos determinados por esses pontos:

$$]-\infty,-2], \quad]-2,-1[, \quad]-1,3[, \quad]3,\infty[$$

6. Aplicando o teste de sinais, a inequação é satisfeita em:

$$]-\infty,-2]\cup]-1,3]$$

Resposta: $C.]-\infty,-2]\cup]-1,3]$

Questão 28

Enunciado: A solução da equação

$$\log_{1/3}(2x^2 - 9x + 4) = -2$$

é:

Alternativas:

1.
$$\{5, -\frac{1}{2}\}$$

2.
$$\{-5, -\frac{1}{2}\}$$

3.
$$\{5, -/2\}$$

4.
$$\{-5, \frac{1}{2}\}$$

1. Lembrando que $\log_a(y) = b \Rightarrow y = a^b$, então:

$$2x^2 - 9x + 4 = (1/3)^{-2}$$

2. Calculamos $(1/3)^{-2} = 3^2 = 9$. Portanto:

$$2x^2 - 9x + 4 = 9$$

3. Subtraímos 9 de ambos os lados:

$$2x^2 - 9x + 4 - 9 = 0 \implies 2x^2 - 9x - 5 = 0$$

4. Resolvemos a equação quadrática:

$$x = \frac{9 \pm \sqrt{(-9)^2 - 4 \cdot 2 \cdot (-5)}}{2 \cdot 2} = \frac{9 \pm \sqrt{81 + 40}}{4} = \frac{9 \pm \sqrt{121}}{4} = \frac{9 \pm 11}{4}$$

5. Obtemos as soluções:

$$x_1 = \frac{9+11}{4} = \frac{20}{4} = 5, \quad x_2 = \frac{9-11}{4} = \frac{-2}{4} = -\frac{1}{2}$$

Resposta: $A. \{5, -\frac{1}{2}\}$

Questão 29

Enunciado: Uma indústria de refrigerantes tem sua produção diária p, em garrafas, variando com o número de operadores em serviço n, de acordo com a função:

$$p(n) = n^2 + 50n + 20000.$$

Qual será a produção da empresa se o número de operadores for 40?

Alternativas:

[A.]

- 1. 22450
- 2. 22600
- 3. 23560
- 4. 23600

Resolução passo a passo:

1. Substituímos n = 40 na função:

$$p(40) = 40^2 + 50 \cdot 40 + 20000$$

2. Calculamos cada termo:

$$40^2 = 1600$$
, $50 \cdot 40 = 2000$

3. Somamos todos os termos:

$$p(40) = 1600 + 2000 + 20000 = 23600$$

Resposta: D. 23600

Enunciado: Calcule o limite

$$\lim_{x \to \frac{\pi}{2}} \frac{\sin x - 1}{x - \frac{\pi}{2}}.$$

Alternativas:

[A.]

- 1. -1
- 2. 0
- 3. 1
- 4. 2

Resolução passo a passo:

1. Reconhecemos a forma $\frac{f(x)-f(a)}{x-a}$ com $f(x)=\sin x$ e $a=\frac{\pi}{2}$. 2. Pelo limite fundamental que define a derivada:

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a).$$

3. Assim o limite pedido é $f'(\frac{\pi}{2})$, onde $f'(x) = \cos x$. 4. Calculando:

$$f'\left(\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) = 0.$$

Resposta: B. 0

Questão 31

Enunciado: Dois números positivos A e B são tais que $\log(A,B) = 7$ e $\log(A;B) = 1$. Então:

Alternativas:

[A.]

- 1. A = 1000 e B = 100
- 2. A = 1000 e B = 1000
- 3. A = 10000 e B = 1000
- 4. A = B

Observação sobre notação: A notação dada está ambígua — não é claro qual a base de cada logaritmo (por exemplo, se $\log_A B$, $\log_B A$, $\log_{10} A$, etc.). Vou usar uma interpretação natural que costuma aparecer em exercícios de logaritmos com duas igualdades pareadas:

Interpretação adotada (assumida): $\log_A B = 7$ e $\log_B A = 1$.

Resolução passo a passo (sob essa suposição):

1. Pela primeira igualdade:

$$\log_A B = 7 \implies B = A^7.$$

2. Pela segunda igualdade:

$$\log_B A = 1 \implies A = B^1 = B.$$

3. Das duas relações obtém-se A=B e $B=A^7$. Substituindo B=A em $B=A^7$:

$$A = A^7 \implies A(A^6 - 1) = 0.$$

Como procuramos números positivos, A > 0, logo $A^6 = 1 \Rightarrow A = 1$. Então A = B = 1.

4. Conclusão: com a interpretação adotada a única solução positiva é A=B=1. Dada a lista de alternativas, a que melhor representa a conclusão qualitativa é a alternativa D: A=B (nota: a condição completa fornece A=B=1).

Resposta (sob a interpretação acima): $\boxed{D. A = B}$

Questão 32

Enunciado: Determinar a equação da mediatriz do segmento cujos extremos são A(-3,1) e B(5,7).

Alternativas:

[A.]

1.
$$4x + 3y - 16 = 0$$

$$2. 4x + 3y + 16 = 0$$

$$3. 3x + 4y - 16 = 0$$

4.
$$3x - 4y + 16 = 0$$

Resolução passo a passo:

1. Calculamos o ponto médio M de AB:

$$M\left(\frac{-3+5}{2}, \frac{1+7}{2}\right) = M(1,4).$$

2. O declive da recta AB é

$$m_{AB} = \frac{7-1}{5-(-3)} = \frac{6}{8} = \frac{3}{4}.$$

3. O declive da mediatriz (recta perpendicular) é o negativo do recíproco:

$$m_{\perp} = -\frac{4}{3}.$$

4. Equação da recta com declive $-\frac{4}{3}$ que passa por M(1,4):

$$y - 4 = -\frac{4}{3}(x - 1).$$

Multiplicando por 3 e rearranjando:

$$3y - 12 = -4x + 4 \implies 4x + 3y - 16 = 0.$$

Resposta: A. 4x + 3y - 16 = 0

Enunciado: A expressão que corresponde à função derivada de

$$f(x) = \frac{x-3}{2x+4}$$

é:

Alternativas:

[A.]

- 1. $\frac{-x+3}{(2x+4)^2}$
- 2. $\frac{2x+4}{(2x-4)^2}$
- 3. $\frac{10}{(2x+4)^2}$
- 4. $\frac{-10}{(2x+4)^2}$

Resolução passo a passo:

1. Aplicamos a regra do quociente:

$$f'(x) = \frac{(1)(2x+4) - (x-3)(2)}{(2x+4)^2}.$$

2. Calculamos o numerador:

$$2x + 4 - 2x + 6 = 10$$
.

3. Logo

$$f'(x) = \frac{10}{(2x+4)^2}.$$

Resposta: C.
$$\frac{10}{(2x+4)^2}$$

Questão 34

Enunciado: Em que intervalo a função

$$f(x) = 3x^3 - 36x$$

é crescente?

Alternativas:

1.
$$]-\infty, -2] \cup [2, +\infty[$$

$$[-2,2]$$

4.
$$]2, +\infty[$$

1. Calculamos a derivada:

$$f'(x) = 9x^2 - 36 = 9(x^2 - 4) = 9(x - 2)(x + 2).$$

- 2. Determinamos o sinal de f'(x): Para x < -2: (x-2)(x+2) > 0 f'(x) > 0. Para -2 < x < 2: (x-2)(x+2) < 0 f'(x) < 0. Para x > 2: (x-2)(x+2) > 0 f'(x) > 0.
- 3. Logo f é crescente onde $f'(x) \ge 0$, i.e. em $]-\infty,-2] \cup [2,+\infty[$. (Se preferires estritamente crescente, remove-se $\{-2,2\}$, ficando $]-\infty,-2[\cup]2,+\infty[$.)

Resposta: A.]
$$-\infty$$
, -2] \cup [2, $+\infty$ [

Questão 35

Enunciado: Uma das funções f(x) cuja derivada é igual a $\frac{1}{2\sqrt{3}}$ é:

Alternativas:

[A.]

1.
$$3\sqrt{x}$$

2.
$$2\sqrt{x}$$
; $x = 3$

3.
$$\sqrt{x}$$
; $x = -3$

4.
$$\sqrt{x}$$
; $x = 3$

Resolução passo a passo:

1. A derivada de $f(x) = \sqrt{x} = x^{1/2}$ é

$$f'(x) = \frac{1}{2\sqrt{x}}.$$

- 2. Para que $f'(x) = \frac{1}{2\sqrt{3}}$ precisamos de $\sqrt{x} = \sqrt{3}$, ou seja x = 3.
- 3. Portanto, a função \sqrt{x} em x = 3 tem derivada $\frac{1}{2\sqrt{3}}$.

Resposta: D.
$$\sqrt{x}$$
; $x = 3$

Questão 36

Considere o experimento lançar um dado duas vezes consecutivas e somar os resultados obtidos no primeiro e no segundo lançamento. A probabilidade de sair uma soma maior que 8 e a probabilidade do evento complementar são, respectivamente:

Resolução:

Número total de resultados possíveis ao lançar dois dados:

$$6 \times 6 = 36$$

Listando as combinações cuja soma é maior que 8:

Soma	Combinações possíveis
9	(3,6), (4,5), (5,4), (6,3)
10	(4,6), (5,5), (6,4)
11	(5,6),(6,5)
12	(6,6)

Total de casos favoráveis:

$$4+3+2+1=10$$

Probabilidade da soma ser maior que 8:

$$P(\text{soma} > 8) = \frac{10}{36} = \frac{5}{18} \approx 0.2777 = 27.7\%$$

Probabilidade do evento complementar (soma ≤ 8):

$$P(\text{complementar}) = 1 - 0.2777 = 0.7223 = 72.3\%$$

Resposta correta: C)
$$27.7\%$$
 e 72.3%

Questão 37

Enunciado: O ponto Q(3,d) pertence à circunferência de centro O(0,2) e raio 4. Calcule o(s) valor(es) da coordenada d.

Alternativas:

[A.]

1.
$$2 + \sqrt{7} \cup -2 - \sqrt{7}$$

2.
$$2 + \sqrt{7} \cup 2 - \sqrt{7}$$

3.
$$-2 + \sqrt{7} \cup 2 - \sqrt{7}$$

4.
$$7 + \sqrt{2} \cup 7 - \sqrt{2}$$

Resolução passo a passo:

1. Ponto Q(3,d) está na circunferência de centro O(0,2) e raio 4. Usamos a equação da circunferência:

$$(3-0)^2 + (d-2)^2 = 4^2.$$

Olá! Estou aqui para ajudar com qualquer dúvida ou informação de que você precise. Se você tiver alguma pergunta ou precisar de assistência, sinta-se à vontade para entrar em contato comigo no WhatsApp. Estou disponível para conversar e ajudar no que for necessário.

Aguardo o seu contato! 879369395

2. Calculamos:

$$9 + (d-2)^2 = 16 \implies (d-2)^2 = 7.$$

3. Tirando raiz quadrada:

$$d-2=\pm\sqrt{7}$$
 \Longrightarrow $d=2\pm\sqrt{7}$.

Resposta: B. $2 + \sqrt{7} e^2 - \sqrt{7}$

Questão 38

Enunciado: A função $S(t) = t^4 - 8t^2$ representa o movimento retilíneo de uma partícula. A aceleração no primeiro instante de repouso após t = 0 vale:

Alternativas:

[A.]

- 1. 16
- 2. 20
- 3. 24
- 4. 32

Resolução passo a passo:

1. Velocidade:

$$v(t) = S'(t) = 4t^3 - 16t = 4t(t^2 - 4) = 4t(t - 2)(t + 2).$$

- 2. As instantes de repouso são as raízes de v(t) = 0: t = 0, t = 2, t = -2. O primeiro instante de repouso $após\ t = 0$ é t = 2.
 - 3. Aceleração:

$$a(t) = S''(t) = 12t^2 - 16.$$

4. Avaliando em t=2:

$$a(2) = 12 \cdot 2^2 - 16 = 12 \cdot 4 - 16 = 48 - 16 = 32.$$

Resposta: D. 32

Questão 39

Enunciado: Nos 4 primeiros dias úteis de uma semana, o gerente de uma agência bancária atendeu 19, 15, 17 e 21 clientes. Nos 5 dias úteis dessa semana, esse gerente atendeu N clientes. Se a **média** do número diário de clientes atendidos por esse gerente nos 5 dias úteis dessa semana foi de 19, determine a **mediana**.

Alternativas:

[A.]

1. 19

- 2. 20
- 3. 21
- 4. 23

1. Pela definição de média:

$$\frac{19 + 15 + 17 + 21 + N}{5} = 19$$

2. Multiplicando ambos os lados por 5:

$$19 + 15 + 17 + 21 + N = 95$$

3. Somando os quatro primeiros valores:

$$72 + N = 95 \implies N = 23$$

- 4. Assim, os cinco valores são: 15, 17, 19, 21, 23.
- 5. A **mediana** é o valor central (terceiro valor em ordem crescente):

$$Mediana = 19$$

Resposta: A. 19

Questão 40

Enunciado: Sabe-se, pela Lei de Newton, que a força F produzida por um corpo em movimento é equivalente ao produto da massa do corpo pela sua aceleração, isto é:

$$F = M \cdot A$$
.

Um grupo de N homens está empurrando uma alavanca contra uma plataforma. A massa que produz a força F sobre a plataforma varia com a função:

$$M = 35n + 4 \text{ (em kg)},$$

enquanto a aceleração varia com a função:

$$A = 2n + 1 \text{ (em m/s}^2).$$

Calcule o número N de elementos necessários para produzir uma força de 763 N. **Alternativas:**

[A.]

- 1. n = 7
- $2. \ n=5$
- 3. n = 3

4.
$$n = 1$$

1. Pela Segunda Lei de Newton:

$$F = M \cdot A$$

$$763 = (35n + 4)(2n + 1)$$

2. Efetuando a multiplicação:

$$763 = 70n^2 + 35n + 8n + 4 = 70n^2 + 43n + 4$$

3. Passamos todos os termos para um lado:

$$70n^2 + 43n + 4 - 763 = 0$$

$$70n^2 + 43n - 759 = 0$$

4. Resolvendo a equação do segundo grau:

$$n = \frac{-43 \pm \sqrt{43^2 - 4(70)(-759)}}{2(70)}$$

$$n = \frac{-43 \pm \sqrt{1849 + 212520}}{140}$$

$$n = \frac{-43 \pm \sqrt{214369}}{140}$$

5. $\sqrt{214369} = 463$. Logo:

$$n = \frac{-43 + 463}{140} = \frac{420}{140} = 3$$

(O outro valor seria negativo e não faz sentido físico.)

Resposta: C. n = 3