

Bem-vindo(a) à nossa aplicação de preparação para exames! Chegou a hora de se destacar nos seus testes e conquistar o sucesso acadêmico que você merece. Apresentamos o "Guião de Exames Resolvidos": a sua ferramenta definitiva para uma preparação eficaz e resultados brilhantes!

Aqui, encontrará uma vasta coleção de exames anteriores cuidadosamente selecionados e resolvidos por especialistas em cada área. Nossa aplicação é perfeita para estudantes de todos os níveis acadêmicos, desde o ensino médio até a graduação universitária.

RESUMO DA MATRIZ DE OBJECTIVOS E CONTEÚDOS DO EXAME FINAL DE QUÍMICA - 9.ª CLASSE

Sumário

Unidade I. Classes dos compostos inorgânicos

Unidade II. Estrutura atómica e Tabela Periódica

Unidade III: Ligação química

Unidade IV: Cloro e os elementos do grupo VIIA

Unidade V: Enxofre e os elementos do grupo VIA

Unidade VI: Nitrogénio e os elementos do grupo VA

Unidade I. Classes dos compostos inorgânicos

1. Óxidos: São compostos formados por apenas dois elementos, sendo um deles o oxigénio.

Ex.: Na₂O, CaO, NO₂, etc.

Fórmula geral: X₂O_n onde:

 $\mathbf{X} - \acute{\mathbf{E}}$ o elemento que se combina o oxigénio; $\mathbf{O} - \acute{\mathbf{E}}$ o oxigénio

 $\mathbf{n} - \mathbf{E}$ a valência do elemento que se combina com o oxigénio; $\mathbf{2} - \mathbf{E}$ a valência do oxigénio

Classificação dos óxidos

1 – Óxidos metálicos ou básicos: Resultam da combinação do oxigénio com outro elemento químico de carácter metálico. Ex.: K₂O, Na₂O, CaO, etc.

2 - Óxidos ametálicos ou ácidos: Resultam da combinação do oxigénio com outro elemento químico de carácter ametálico. Ex.: CO₂, P₂O₅, N₂O₃, etc.

Nomenclatura dos óxidos metálicos

Regra: Óxido + de + nome do elemento combinado com o oxigénio

Ex.: K₂O – Óxido de potássio MgO – Óxido de magnésio

Para metais com mais do que uma valência:

Regra: Óxido + de + nome do metal + Valência do metal

Ex.: FeO – Óxido de ferro (II) Cu_2O – Óxido de cobre (I)

Fe₂O₃ – Óxido de ferro (III) CuO – Óxido de cobre (II)

NB: A valência é escrita em numeração romana, a seguir ao nome dentro de parêntesis. Também são utilizados as terminações ico e oso.

Ico – Para o óxido em que o elemento combinado com o oxigénio apresenta maior valência.

Oso - Para o óxido em que o elemento combinado com o oxigénio apresenta menor valência.

Ex.: FeO – Óxido ferroso, a valência do ferro é II.

Fe₂O₃ – Óxido de ferrico, a valência do ferro é III.

Nomenclatura dos óxidos ametálicos

Aplicam – se os prefixos gregos que indicam o número de átomos do oxigénio e do elemento existente na fórmula do respectivo óxido.

Nº de átomos	1	2	3	4	5	6	7
Prefixos	Mon	Di	Tri	Tetra	Pent	Hex	Hept

Ex.: CO - Monóxido de carbono

CO₂ – Dióxido de carbono

N₂O₃ – Trióxido de dinitrogénio

N₂O₅ – Pentóxido de dinitrogénio

Obtenção dos óxidos

1. Reacção entre um elemento e o oxigénio

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$$

$$4Na_{(s)} + O_{2(g)} \rightarrow 2Na_2O_{(g)}$$

2. Decomposição dos sais dos metais oxigenados

$$CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$$

$$MgSO_{4(s)} \rightarrow MgO_{(s)} + SO_{3(g)}$$

3. Decomposição térmica das bases

$$Ca(OH)_{2(s)} \rightarrow CaO_{(s)} + H_2O_{(g)}$$

$$Hg(OH)_{2(s)} \rightarrow HgO_{(s)} + H_2O_{(g)}$$

Propriedades químicas dos óxidos

1. óxidos metálicos

a) Reacção com água: Óxido metálico + Água→ Bases

Ex.:
$$Na_2O_{(s)} + H_2O_{(l)} \rightarrow 2NaOH_{(aq)}$$

b) Reacção com ácido: Óxido metálico + Ácido - Sal + Água

Ex.:
$$K_2O_{(s)} + 2HNO_{3(aq)} \rightarrow 2KNO_{3(aq)} + H_2O_{(l)}$$

2. Óxidos ametálicos

a) Reacção com água: Óxido ametálico + Água→ Sal

$$Ex.: CO_{2(g)} + H_2O_{(l)} \rightarrow H_2CO_{3(aq)}$$

b) Reacção com base: Óxido metálico + Base→ Sal + Água

$$Ex.: CO_{2(g)} + 2KOH_{(s)} \rightarrow K_2CO_3(s) + H_2O_{(l)}$$

Reacção dos óxidos metálicos com óxidos ametálicos

Óxido metálico + Óxido ametálico → Sal

$$CaO_{(s)} + SO_{3(g)} \rightarrow CaSO_{4(s)}$$

Ácidos

Definição segundo Arrhenius: Ácidos são substâncias que em solução aquosa libertam iões $hidrogénio(H^+)$.

$$Ex.: HCl_{(aq)} \rightarrow H^{+}_{(aq)} + Cl^{-}_{(aq)}$$

Composição: Os ácidos têm um radical positivo (do hidrogénio) e um radical ácido negativo, com a fórmula geral: $\mathbf{H_n}\mathbf{A}$ onde:

 $\mathbf{H} - \acute{\mathbf{E}}$ o átomo de hidrogénio

 $\mathbf{A} - \acute{\mathbf{E}}$ o grupo com átomos de carga (-n)

 $\mathbf{n} - \acute{\mathbf{E}}$ a valência do radical A

Classificação dos ácidos

1. Quanto à presença do oxigénio

a) Oxiácidos: Contém átomos de oxigénio nas suas moléculas.

Ex.: HNO₃, H₂CO₃, H₂SO₄, etc.

b) Hidrácidos: Não contém átomos de oxigénio nas suas moléculas.

Ex.: HCl, H₂S, HCN, etc.

2. Quanto ao número de elementos

a) Ácidos binários: São ácidos que contêm dois elementos diferentes nas suas moléculas.

Ex.: HCl, H₂S, etc.

- b) Ácidos Terciários: São ácidos que contêm três elementos diferentes nas suas moléculas.
- c) Ácidos quaternários: São ácidos que contêm quatro elementos diferentes nas suas moléculas.

Ex.: H₄Fe(CN)₆

Nomenclatura dos ácidos

Uma regra prática referente à nomenclatura dos ácidos é:

Terminação do anião	Terminação do ácido
-ato	-ico
-eto	-ídrico
-ito	-oso

Nomenclatura dos hidrácidos

Regra: Ácido + nome do radical + ídrico

Ex.: Cl⁻ - Clor<u>eto</u> HCl – Ácido clor<u>ídrico</u>

 S^{2-} - Sulfur<u>eto</u> H_2S – Ácido Sulf<u>ídrico</u>

Nomenclatura dos oxiácidos

Regra: Ácido + nome do radical + ico ou oso

Ex.: SO_2^{3-} - Sulfito H_2SO_3 - $\acute{A}cido sulforoso^-$ -

ClO₃- Clor<u>ato</u> HClO₃ – Ácido Clor<u>ico</u>

Propriedades químicas dos ácidos

1. Reacção com óxidos básicos

Ácidos + Óxidos básicos→Sal + Água

 $2HCl_{(aq)} + CaO_{(s)} \hspace{-2pt} \rightarrow \hspace{-2pt} CaCl_{2(aq)} + H_2O_{(l)}$

2. Reacção com bases (reacção de neutralização)

 \acute{A} cido + Base \rightarrow Sal + \acute{A} gua

 $H_2CO_{3(aq)} + Mg(OH)_{2(s)} \hspace{-2pt} \rightarrow \hspace{-2pt} MgCO_{3(s)} + 2H_2O_{(l)}$

3. Reacção com metal

$$HCl_{(aq)} + Ca_{(s)} \rightarrow CaCl_{2(s)} + H_{2(g)}$$

Bases

Definição segundo Arrhenius: São substâncias que em solução aquosa libertam iões hidroxilo (OH⁻).

Ex.:
$$NaOH_{(aq)} \rightarrow Na^+_{(aq)} + OH^-_{(aq)}$$

Composição das bases

 $Me(OH)_n$ onde:

 $Me - \acute{E}$ o átomo de um metal qualquer

 $\mathbf{n} - \acute{\mathbf{E}}$ a valência do metal

OH - É o grupo hidroxilo

Nomenclatura das bases

Regra: Hidróxido + nome do metal

Ex.: NaOH – Hidróxido de sódio Al(OH)₃ – Hidróxido de Alumínio

Quando o elemento metálico tiver mais do que uma valência:

Regra: Hidróxido + nome do elemento + Valência do metal

Fe(OH)₂ – Hidróxido de ferro (II) Fe(OH)₃ – Hidróxido de ferro (III)

Propriedades químicas das bases

1. Reacção com óxidos ácidos

2. Reacção de neutralização

$$Ca(OH)_{2(aq)} + SO_{3(g)} \rightarrow CaSO_{4(s)} + H_2O_{(l)}$$

$$NaOH_{(aq)} + HCl_{aq)} \rightarrow NaCl_{(aq)} + H_2O_{(l)}$$

3. Reacções de decomposição térmica das bases (termólise)

As bases decompõe – se por aquecimento (decomposição térmica), formando óxidos básicos e água, com excepção do hidróxido de amónio (NH₄OH) que liberta amóniaco (NH₃).

$$Ca(OH)_{2(aq)} \rightarrow CaO_{(s)} + H_2O_{(l)}$$

$$NH_4OH \rightarrow NH_3 + H_2O$$

Sais

Definição: São compostos que apresentam o radical de um ácido ligado a um metal

Composição dos sais

 Me_xA_v onde:

Me - É metal

 $\mathbf{A} - \mathbf{\acute{E}}$ o anião

 $\mathbf{X} - \mathbf{\acute{E}}$ a valência do anião

 $\mathbf{Y} - \mathbf{\acute{E}}$ a valência do metal

Nomenclatura dos sais

Regra: Nome do anião + de + nome do metal

Para nomear os sais é muito importante conhecer o nome dos aniões, a tabela a seguir é composta por aniões que constituem os sais comum.

Aniões monovalentes		
Fórmula	Nome	
F-	Floureto	
Cl	Cloreto	
Br	Brometo	
NO ₃ -	Nitrato	
NO ₂ -	Nitrito	
HCO ₃ -	Hidrogenocarbonato	
	ou Bicarbonato	

Aniões Bivalentes		Aniões Trivalentes		
Fórmula	Nome	Fórmula	Nome	
CO ₃ ² -	Carbonato	PO ₄ ³⁻	Fosfato	
SO ₄ ²⁻	Sulfato	PO ₃ ³ -	Fosfito	
SO ₃ ²⁻	Sulfito			
S ²⁻	Sulfeto			
HPO ₄ ²⁻	Nitrito			
HCO ₃ -	Hidrogenofosfato			

Ex.: NaCl – Cloreto de sódio

K₂SO₄ – Sulfato de potássio

NB.: Para os sais dos metais com mais do que uma valência, indica – se a valência do metal depois do nome. A valência deve estar em numeração romana e dentro de parêntesis.

Ex.: PbCl₂ – Cloreto de Chumbo (II)

PbCl₄ – Cloreto de Chumbo (IV)

 $FeCl_{3(s)} + NaOH_{(aq)} \rightarrow 3NaCl_{(aq)} + Fe(OH)_{3(aq)}$

Propriedades químicas dos sais

1. Reacções com ácidos

$$CaCl_{2(s)} + H_2CO_{3(aq)} \rightarrow CaCO_{3(s)} + 2HCl_{(aq)}$$

2. Reacção com bases

$$Sal + Base \rightarrow Sal + Base$$

3. Reacção dos sais com outros sais

$$Sal_1 + Sal_2 \rightarrow Sal_3 + Sal_4$$

$$2NaI_{(s)} + Pb(NO_3)_{2(s)} \rightarrow 2NaNO_{3(s)} + PbI_{2(s)}$$

Relação entre óxidos, bases, ácidos e sais

$$SO_{2(g)} + CaO_{(s)} \rightarrow CaSO_{3(s)}$$

$$P_2O_{5(s)} + 6NaOH_{(aq)} \rightarrow 2Na_3PO_{4(s)} + H_2O_{(l)}$$

$$2HNO_{3(aq)} + Na_2O_{(s)} \rightarrow 2NaNO_{3(s)} + H_2O_{(l)}$$

$$HNO_{3(aq)} + NaOH_{(aq)} \rightarrow NaNO_{3(s)} + H_2O_{(l)}$$

$$CaCl_{2(s)}+ H_2CO_{3(aq)} \longrightarrow CaCO_{3(s)} + 2HCl_{(aq)}$$

$$Na_2CO_{3(s)}+Ba(OH)_{2(aq)} \rightarrow BaCO_{3(s)}+2NaOH_{(aq)}$$

Unidade II. Estrutura atómica e Tabela Periódica

Cálculos de partículas sub – atómicas

O átomo é a menor partícula que caracteriza um elemento químico.

As partículas sub atómicas são: protões, neutrões e electrões.

A=Z+N onde:

 $\mathbf{A} - \acute{\mathbf{E}}$ o número de massa, $\mathbf{Z} - \acute{\mathbf{E}}$ o número atómico, $\mathbf{N} - \acute{\mathbf{E}}$ o número de neutrões

O número atómico e número de massa devem ser representados junto ao símbolo do elemento químico.

Ex. ³⁹K₁₉ representa o átomo de potássio que tem número atómico (Z) igual a 19 e número de massa iguala 39.

A=Z+N

39=19+N

N = 39 - 19

N=20 O número de neutrões é igual a 20.

Isótopos: São átomos do mesmo elemento químico que possuem o mesmo número atómico e diferente número de massa e neutrões.

 ${}^{1}H_{1}$ - Prótio ${}^{2}H_{1}$ - Deutério ${}^{3}H_{1}$ - Trítio

Distribuição electrónica por níveis de energia

Nível de energia é a região da electrosfera de um átomo onde é maior a possibilidade de encontar o electrão.

O número máximo de electrões por nível de energia é dado pela fórmula $2n^2$, onde n é o nível de energia.

Nível de energia	Número máximo de electrões
1	$2n^2=2x(1)^2=2$
2	$2n^2=2x(2)^2=8$
3	$2n^2=2x(3)^2=18$
4	$2n^2=2x(4)^2=32$

Ex.: ²³Na₁₁ 2e⁻)8e⁻)1e⁻) I Grupo A; 3°período

⁴⁰Ca₂₀ 2e⁻)8e⁻)8e⁻) 2e⁻) IIGrupo A; 4ºperíodo

O número de electrões na última camada determina o grupo.

O número de camadas electrónicas ocupadas determina o período.

Unidade III: Ligação química

Ligação química: É a união estabecida entre átomos para formarem as moléculas que constituem a estrutura básica de uma substância ou composto.

Tipos de ligação química

 Ligação iónica – É aquela que ocorre através de transferência de electrões diferentes (metal e não metal).

Ex.: ₁₂Mg 2e⁻)8e⁻)2e⁻)

Como a ligação iónica ocorre?

O magnésio é um metal do II grupo A, que tende a perder electrões. O flúor é um não-metal do VII grupo A, que tende a ganhar electrões.

Perda de electrões do magnésio: O átomo de magnésio tem dois electrões na sua camada de valência e, para atingir a estabilidade, perde esses dois electrões, formando um ião magnésio com carga 2.

Ganho de electrões pelo flúor: Cada átomo de flúor precisa de ganhar um electrão para completar a sua camada de valência (oito electrões), formando um ião flúor com carga -1.

Formação da ligação: Como o ião magnésio (Mg²⁺) tem uma carga positiva de +2 e cada ião flúor (F⁻) tem uma carga negativa de -1, são necessários dois iões de flúor para neutralizar a carga do ião magnésio.

Composto resultante: A atração eletrostática entre o ião Mg^{2+} e os dois iões F^- resulta na formação do fluoreto de magnésio (MgF_2), uma substância iónica sólida.

2. Ligação Covalente – É aquela que ocorre através da partilha de electrões.

A ligação covalente pode ser:

a) Ligação covalente apolar – É aquela que ocorre através da partilha de pares de electrões entre átomos do mesmo elemento químico (não metal).

Ex.: $O_8 \ 2e^{-})6e^{-}) \ 0 = 0$

NB: Substâncias simples como Cl₂, H₂, Br₂, I₂ F₂ apresentam ligações covalentes apolares porque se ligam átomos do mesmo elemento.

b) Ligação covalente polar – É aquela que ocorre através da partilha de electrões entre átomos de elementos diferentes (não metais).

Ex.:
$$H_1$$
 1e⁻) Cl_{17} 2e⁻)8e⁻)7e⁻)

c) Ligação metálica – É aquela que ocorre entre metal e metal.

As ligações metálicas não têm representação electrónica.

Unidade IV: Cloro e os elementos do grupo VIIA

Reacção redox: É aquela que ocorre com a variação do número de oxidação (NOX).

A oxidação consiste no aumento do número de oxidação.

A redução consiste na diminuição do número de oxidação.

Uma espécie que se oxida, cede electrões à outra espécie, reduzindo - a. Por isso, à espécie que se oxida chama - se **redutor ou agente redutor**.

Uma espécie que se reduz, capta electrões da outra espécie, oxidando – a. Por isso, à espécie que se reduz chama – se **oxidante ou agente oxidante**.

Ex.: A equação química que representa a reacção entre o magnésio e o oxigénio é a seguinte:

$$Mg + O_2 \rightarrow 2MgO$$

Determinando os números de oxidação dos elementos, teremos:

$$Mg^0 + O^0_2 \longrightarrow Mg^{2+}O^{2-}$$

O magnésio passa de nox 0 para nox +2 e o oxigénio do nox 0 para nox -2. Sendo assim, o Mg é o **agente redutor** porque oxidou e o oxigénio é o **agente oxidante** porque reduziu.

Semi equação de oxidação – redução

Oxidação: $Mg \rightarrow Mg^{2+} + 2e^{-}$ x2

Redução: $O_2 + 4e^- \rightarrow 2O^{2-}$

Oxidação: $Mg \rightarrow Mg^{2+} + Ae$

Redução: $O_2 + 4e^- \rightarrow 2O^{2-}$

Equação global: $Mg + O_2 \rightarrow Mg^{2+} + O_2$

Lei de Avogadro e volume molar

A lei de Avogadro deve – se ao cientista italiano Avogadro, da qual deriva o número de Avogadro. O número de Avogadro é 6,02x10²³, esta constante física representa o número de

partículas (moléculas, átomos, electrões, iões) existentes numa mol de qualquer substância.

Volume molar

Avogadro explicou a relação simples entre os volumes dos gases que se observam nas reacções químicas, estabelecendo a lei:

"Os volumes iguais de gases diferentes a mesma pressão e temperatura têm o mesmo número de moléculas". Esta lei é conhecida por lei de avogadro.

Em 22,4 litros de qualquer gás, nas $CNTP(0^{\circ} \text{ e 1atm})$ existe a massa de um mol e $6,02x10^{23}$ partículas.

Matematicamente, o volume molar é dado pela razão entre o volume da substância e o número de moles.

Vm = V/n onde: Vm = volume molar; V = Volume da substância e <math>n = número de moles

Ex.: Quantos moles de clorato de potássio (KClO₃) são necessários, em CNTP para a produção de 33,6 litros de oxigénio (O₂) pela decomposição térmica deste sal?

Resolução: A reacção química acertada é: 2KClO₃→2KCl + 3O₂

Moles Volume(CNTP)

2 moles ______ 3x22.41

xmoles ______ 33.61

Em CNTP, 2 moles de KClO₃ formam 3 mol de O₂. Portanto teremos:

X = 2moles x 33,61/3x22,41/

X = 67.2 mol/67.2

X=1 mol

R: Para a produção de 33,6 litros de oxigénio são necessários 1 mol de clorato de potássio(KClO₃).

Unidade VI: Nitrogénio e os elementos do grupo VA

Cinética química: É o ramo da química que estuda a velocidade das reacções químicas e os factores que a influenciam.

Velocidade de uma reacção: É a quantidade de reagentes consumidos ou de produtos formados em função do tempo.

Energia de activação: É a energia mínima necessária que as partículas reagentes devem possuir para formar os produtos da reacção.

Velocidade da reacção e factores que a influenciam

A velocidade de uma reacção química depende de vários factores, tais como:

1. Temperatura: Quanto maior for a temperatura, maior será a velocidade da reacção.

A temperatura é a medida do grau de agitação das partículas, logo o seu aumento vai aumentar a

possibilidade de colisões efectivas.

2. Superfície de contacto: Quanto menor for o tamanho das partículas que reagem, maior será a

superfície de contacto exposta à reacção e consequentemente maior é a velocidade da reacção.

Por exemplo, uma reacção entre uma substância sólida e uma líquida, quanto mais reduzida a pó

estiver a substância sólida, maior é a superfície de contacto entre as partículas e, portanto, maior

é a possibilidade de essas partículas chocarem.

3. Catalisador: É uma substância que aumenta a velocidade de uma reacção química sem sofrer

alteração permanente, isto é, durante a reacção não é consumido.

Os catalisadores diminuem a energia de activação, fazendo com que a reacção se processe mais

rapidamente.

4. Concentração: Quanto maior for a concentração dos reagentes, maior será a velocidade da

reacção.

O aumento da concentração dos reagentes promove o aumento do número de colisões entre as

moléculas.

Unidade VI: Nitrogénio e os elementos do grupo VA

Equilíbrio químico:

Reacções irreversíveis: São aquelas em que a conversão dos reagentes em produtos é total.

Ex.: $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$

Reacções reversíveis: São aquelas que ocorrem em dois sentidos. São reacções parciais, nelas formam – se produtos e reagentes em simultâneo.

Ex.:
$$2SO_{2(s)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$$

O conceito de equilíbrio químico restringe – se praticamente às reacções reversíveis.

Equilíbrio químico: É um estado dinâmico numa reacção reversível em que as velocidades das reacções directa e inversa são iguais e as concentrações das espécies químicas participantes se mantêm constantes.

Princípio de Le Chatilier

Segundo Le Chatelier: "Quando um sistema em equilíbrio sofre uma perturbação, este reage de modo a anular o efeito desta perturbação e restabelecer o equilíbrio".

Factores que alteram o estado de equilíbrio numa reacção química

1. Concentração: Quando há aumento na concentração de uma das substâncias num sistema em equilíbrio, este desloca – se no sentido de contrário do aumento, no caso de diminição o equilíbrio desloca – se no sentido da diminuição.

Ex.:
$$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$$

O aumento da concentração do hidrogénio (H₂), deslocará o equilíbrio para a direita.

A diminuição da concentração do hidrogénio (H₂), deslocará o equilíbrio para a esquerda.

2. Variação da temperatura: O aumento da temperatura favorece a reacção endotérmica do sistema, enquanto que a diminuição da temperatura desloca o equilíbrio no sentido da reacção exotérmica.

Ex.: 2HI_(g)≠I_{2(g)} + H_{2(g)} Q= +11kJ a reacção directa é exotérmica e a inversa é endotérmica

O aumento da temperatura deslocará o equilíbrio para a esquerda.

A diminuição da temperatura deslocará o equilíbrio para a direita.

3. Pressão: O aumento da pressão (que é diminuição do volume) deslocará o equilíbrio para o lado de menor número de moles, enquanto que a diminuição da pressão (aumento do volume) deslocará o equilíbrio para o lado de maior número de moles.

Ex.:
$$3H_{2(g)} + I_{2(g)} \rightleftharpoons 2NH_{3(g)}$$

O aumento da pressão (que é diminuição do volume) deslocará o equilíbrio para a direita (produtos).

A diminuição da pressão (aumento do volume) deslocará o equilíbrio para a esquerda (reagentes)

NB: Para as reacções endotérmicas:

Para as reacções exotérmicas:

1.
$$A + B \rightarrow AB \Delta H > 0$$

1.
$$A + B \rightarrow AB \Delta H < 0$$

2.
$$A + B \rightarrow AB - Q$$

2.
$$A + B \rightarrow AB + kJ$$

3.
$$A + B + Q \rightarrow AB$$

3.
$$A + B - Q \rightarrow AB$$

Referências bibliográficas

Afonso, A.(2007). *Módulo 4 – 9^aClasse – Programa do Ensino Secundário à Distância*. Maputo Barros, José A.P. (2008). *Química 9^a classe*. Maputo. Plural Editores.

Mabjaia, Luísa B., M. (2008). Química para todos. Editora Nacional de Maputo.

MINEDH – DINES (2022). Meu Caderno de Actividades de Química 9ª Classe. Maputo.

Silva, Filomena N.(2017). *Química 9^a classe*. Maputo. Texto editores.

Tocoli, Felismino(1999). Química 9ª classe, Editora Escolar. Maputo-Moçambique

PUBLICIDADE

